
IEICE TRANS. COMMUN., VOL.E87–B, NO.3 MARCH 2004
429

PAPER Special Section on Internet Technology IV

Linux IPv6 Stack Implementation Based on Serialized Data State
Processing

Hideaki YOSHIFUJI†a), Student Member, Kazunori MIYAZAWA††b), Masahide NAKAMURA†††c),
Yuji SEKIYA†d), Nonmembers, Hiroshi ESAKI†e), and Jun MURAI††††f), Members

SUMMARY IPv6 is realized as the next generation internet platform,
succeeding the current IPv4 internet environment. Linux, one of the major
operating systems, has supported IPv6 since 1996, however, the quality of
the protocol stack has not been good enough for professional operation. In
this paper, we show our IPv6 stack implementation design regarding the
neighbor management in Neighbor Discovery Protocol (NDP), the rout-
ing table management and the packet processing using XFRM architecture.
The implementation is designed based on the Serialized Data State Pro-
cessing, which aims at simpler object management so as to achieve stable,
flexible and extensible IPv6 stack. According to the TAHI IPv6 Protocol
Conformance Test Suite, we can show our implementation achieves enough
implementation quality.
key words: IPv6, Linux, serialized data state processing

1. Introduction

The Internet has run with the Internet Protocol Version 4,
so called as IPv4 [11], since the end of 1960s. At the end
of 1980s, the internet experts working at the IETF (Internet
Engineering Task Force) [18] has recognized that we need a
new version of Internet Protocol to come up with too rapid
growth of the Internet. In 1992, this new version of protocol
was named as IPng (IP next generation). The primary con-
cerns since the middle of 1990s were the significant growth
of routing table entries maintained in the routers and the
throughput yielded by the routers. Furthermore, there was
some concerning on the shortage of IP (IPv4) addresses to
be allocated to.

The full-scale technical discussion on the IPng started
in 1992 at the IETF. IPng, i.e., Internet Protocol Version 6
(IPv6) [2], was designed to solve the various issues on the
traditional IPv4, such as performance of packet forwarding,
protocol extensibility, security and privacy. The basic spec-
ification of IPv6 was defined in 1994. After the experimen-

Manuscript received June 25, 2003.
Manuscript revised September 19, 2003.
†The authors are with the University of Tokyo, Tokyo, 113-

8656 Japan.
††The author is with Yokogawa Electric Corporation, Musa-

shino-shi, 180-8750 Japan.
†††The author is with Hitachi Communication Technologies,

Ltd., Yokohama-shi, 244-8567 Japan.
††††The author is with Keio University, Fujisawa-shi, 252-8520

Japan.
a) E-mail: hideaki@yoshifuji.org
b) E-mail: Kazunori.Miyazawa@jp.yokogawa.com
c) E-mail: masahide nakamura@hitachi-com.co.jp
d) E-mail: sekiya@wide.ad.jp
e) E-mail: hiroshi@wide.ad.jp
f) E-mail: jun@wide.ad.jp

tal implementation and network operation (e.g., 6bone [1]),
the IPv6 technology is now getting into the production and
professional phase. Commercial IPv6 services by Internet
Service Providers and the applications running with IPv6
has been already available around us. This means that, the
IPv6 stack implemented in any devices must be of produc-
tion quality.

Linux system has also supported the IPv6 protocol as
well as other operating systems such as FreeBSD [17], Sun
Solaris [15] and Microsoft Windows XP [9]. Linux has in-
cluded IPv6 stack since 1996 when early Linux 2.1.x version
released. After the integration of IPv6 stack into the main-
line kernel, however, it has not been actively developed nor
maintained by the kernel maintainers.

Through the observation and analysis of the legacy
IPv6 stack implementation in Linux, we realized that the
implementation architecture and design of the legacy IPv6
stack were rather complex and were not well organized. In
this paper, we propose a new implementation design based
on the Serialized Data State Processing approach. The pro-
posed design is simple and extendable, by means of the in-
troduction of serialized object and state processing structure.
The implementation described in this paper has been inte-
grated as the USAGI Project IPv6 stack [20].

We describe our IPv6 stack implementation design and
the conformance evaluation result in this paper. Section 2
discusses the background, related works and abstract of our
design principle. Section 3 describes the neighbor manage-
ment architecture in NDP (Neighbor Discovery Protocol)
implementation, Sect. 4 describes the routing table manage-
ment in router, and Sect. 5 describes IP packet processing
using XFRM concept. Finally, Sect. 6 gives a brief conclu-
sion.

2. Serialized Data State Processing

2.1 Background and Problem Description

It is well-known that the state management of large system
is not an easy task. In general, we usually divide the system
into several parts, so called “modules,” and prohibit the di-
rect operations against values in the module from the other
modules. One of the methods to achieve the goal using dis-
tributed self-managed objects and message passing among
them is Object Oriented Programming (OOP). It is also im-
portant for efficient multi-processing to divide system into



430
IEICE TRANS. COMMUN., VOL.E87–B, NO.3 MARCH 2004

Fig. 1 Data object dependency graph.

multiple modules, which autonomously run from states of
other modules.

Linux system has obviously been applied the modular-
ization, i.e., a kind of OOP. For example, the implementa-
tion of reference counting, which is defined to manage the
lifetime of each object, is based on the idea of OOP. How-
ever, the state dependency among the objects would not be
well organized. It is required to have complex mutual ex-
clusion and rather exception handing due to the collision of
dependency and state transition. It is also difficult to extend
features and functions. This is because the complex state
dependency among objects makes difficult the correct state
management and implementation, against the introduction
of new object(s) or state(s) into the existing system.

In this paper, we reorganize the state transition of ob-
jects in the Linux IPv6 stack. In Linux IPv6 stack, there
are many state transition topologies, which has a loop in the
state transition, as shown in Fig. 1. When we do not have
any loop in the state transition topology, the state manage-
ment and implementation becomes far easier than the case
where there is a loop in the state transition. We name this
design principle as “Serialized Data State Processing.” With
this approach, we can achieve stable, flexible and extensible
implementation.

2.2 Serialized Data State Processing

Large processing task is divided into multiple small process-
ing tasks and objects. These tasks and objects are connected
as linear as possible, in order to avoid including a loop in
the state transition topology. The basic entity of the Se-
rialized Data State Processing design is self-managed data
object and consists of the following elements:

Mutual Exclusion
The serialization of accesses to the object is imple-
mented using lock or semaphore. In general, from
the view point of serialization of data access, the mu-
tual exclusion is unnecessary inside the object if the
container has a mutual exclusion mechanism. How-
ever, we introduce it inside the object in order to make
objects as independent as possible each other. With
this implementation design, it is expected that we can
share each object between multiple containers, and that
we can improve the performance efficiency in multi-
processing environment.

Fig. 2 Serialized data state.

Reference Counter
Reference counter manages the lifetime of the object
based on the number of object references. An object
can kill itself if its reference count becomes zero. How-
ever, with some complex state management, we need
an external garbage collection mechanism to remove
non-referenced objects in the container. When we sep-
arate the management of reference counter for each ob-
ject and the management of objects in the correspond-
ing container, we can manage the objects more easily
and surely than we can without this separation.

In addition to these elements, we need an object manage-
ment timer, which is included inside the object if applicable.

Serialized Data State Processing is a kind of combina-
tion of self-managed data object described above where one
or more data objects are combined by directed links, and
then the set of objects work all together. When we define
the topology and object appropriately, we can eliminate the
unnecessary (external) referencing against the other object
while maintaining the object independency. In particular,
when we can define the linear topology (as shown in Fig. 2),
we can eliminate the conflicts of resource dependency which
frequently cause a deal lock.

3. Neighbor Discovery

Neighbor Discovery (ND) is one of fundamental elements
of IPv6 protocol suite. ND has the following functions [10],
[19].

• Router and Prefix Discovery
• Address Resolution and Neighbor Unreachability De-

tection
• Redirect

Address Resolution and Neighbor Unreachability De-
tection maintain the status of neighbors and this is the core
functionality of ND, i.e. router selection should be executed
in conjunction with the status of neighbor nodes. The state
of each neighbor is maintained via the Neighbor Cache En-
try (NCE). Therefore, in order to maintain the stable com-
munication, it is required to have the accurate timer and state
management of NCE against the various events expected to
occur on the network.

In the legacy Linux implementation, NCE was man-
aged by the global periodic polling timer (Global Timer) and
by the timer maintained inside the entry (Internal Timer), as
shown in Fig. 3.

Global Timer
Periodic timer (30 seconds) invokes the management
task, which checks reachability of every node and
cleans up entries in the table.



YOSHIFUJI et al.: LINUX IPV6 STACK IMPLEMENTATION BASED ON SERIALIZED DATA STATE PROCESSING
431

Fig. 3 Legacy Linux NDP table management.

Fig. 4 KAME NDP table with periodic timer.

Internal Timer
Dynamic timer residenting in the entry invokes the
management task for itself in semi-reachable states.

The state of each NCE is referred both by the Global Timer
and by the Internal Timer. This means that status manage-
ment operation is complex and conflicted. At the same time,
though the protocol requires the accuracy of few seconds for
all state management, the Global Timer can not provide suf-
ficient time accuracy. This is because Global Timer runs
with a order of decades seconds (30 sec.) accuracy.

NDP table management in KAME uses the periodic
timers. One is for status management and the other is for
table management. The timers run management tasks in
every one second respectively (Fig. 4) so that the error of
timing accuracy becomes 1 second at worst. However, this
table management design in KAME stack would not be op-
timal implementation, especially for multi-processing envi-
ronment. This is because it uses the “global” locking mech-
anism. It is worse when frequent timing refinement is re-
quired.

Based on the above observations, we redesigned the
NCE management implementation based on our proposed
design. We reorganized the management tasks including
timers and mutual exclusion (locks) for state management.

As shown in Fig. 5, we separate the NCE management,
that is invoked only by dynamic Internal Timer. Also, in the

Fig. 5 Proposed NDP table with dynamic timers.

Table 1 TAHI conformance test result of NCE management (PASS
ratio).

Linux 2.4.18 USAGI 2.4 KAME/FreeBSD 4
39% 89% 98%

NCE management, each Internal Timer residenting at each
entry is responsible only to an corresponding entry. This
means that the NCE management interacting with Internal
Timer is autonomous and self-managed operation at each
entry. The management task, that is the garbage collection,
invoked by the Global Timer, never directly refer any NCE
in the table.

In summary, with the proposed implementation design,
the resource management, including mutual exclusion, and
the control frequency of global clocks can be simplified.

Table 1 shows the conformance evaluation results via
the TAHI [16] IPv6 Conformance Test Suite. As shown, our
NDP implementation achieves higher conformance com-
pared with the legacy Linux implementation.

4. State Processing in Routing Table Management

Routing is the process of delivering IP packets to the des-
tination node. Routing table maintains all the information
necessary to forward the received IP packet either to next
hop router or to the destination node.

Linux IPv6 routing table, known as “Forwarding Infor-
mation Base,” is constructed by the Radix Tree [14], which
is composed by nodes and leaves.

Figure 6 shows the routing table and neighbor man-
agement in Linux implementation. Every node represents
a bit position to examine. Each node with the RTN RTINFO
flag has a linked list for the leaves, which represents the ac-
tual routing information, such as metric and next-hop. The
next-hop then actually refers to the corresponding NCE. Un-
likely to the traditional BSD variants, Linux supports mul-
tiple paths for a single destination. Leaves are chained in
numerical order of metric.

In this section, we describe how the Serialized Data
State Processing approach is applied to the routing manage-
ment in Linux system. The routing management includes
(1) default routers management and (2) router precedence
management. As for the list of default routers, we eliminate



432
IEICE TRANS. COMMUN., VOL.E87–B, NO.3 MARCH 2004

Fig. 6 Linux routing table and neighbor table.

Fig. 7 Linux IPv6 routing table structure.

the “Default Router List” by means of putting the informa-
tion with regard to default routers as the routing information
for ::/0. As for the Default Router Selection and Load Shar-
ing between Routers, we use the link topology to describe
the state for round-robin. By using this mechanism, we can
eliminate the link from external entity for maintaining pri-
ority information. In addition, we can achieve load sharing
between routers associated with generic routes.

4.1 Default Routers Management

ND introduces a new data structure named as “Default
Router List.” It contains the information of “default routers”
advertised via Router Advertisement messages generated by
neighbor routers.

KAME maintains the information of default routers in
separate “Default Router List.” On the other hand, with
legacy Linux implementation, the Default Router List is
held on the top-level root of the routing table tree as if it
is a kind of routes to ::/0 (“default route”). The first en-
try for ::/0 always points ipv6 null entry, which is never
used as normal routes, and the “default routers” follows it
(Fig. 7). They are exceptionally used on hosts because of
the special default router selection. When a default route
is to be added, however, the corresponding information is

Fig. 8 USAGI IPv6 routing table structure.

Fig. 9 Default routers in Linux.

attached at the next of the rt6 info{} structure which con-
tains ipv6 null entry. With this procedure, the appended
routes to ::/0 can not be referred to, because the special de-
fault router selection is not applied to normal routes to ::/0.

When we investigate the principle of routing table and
the concept of the “Default Router List,” we realize that we
should not treat ::/0 as a special case. In our proposed imple-
mentation, when we add a new routing entry on the top-level
root of the tree, we replace the ipv6 null entry with the
new entry as shown in Fig. 8. When the last route is being
deleted from the the top-level root of the tree, we re-insert
ipv6 null entry. It means that we actually treat the “de-
fault routes” which include the information regarding “De-
fault Routers” as “normal” routes. As a result, we can natu-
rally insert or remove the “default route” entries properly to
or from the routing table, in the same way as we do for other
normal routes.

4.2 Router Precedence Management

Picking up one router from the (next-hop) routers list, which
has the same destination, is called “Router Selection.” “De-
fault Router Selection” can be considered as a special case
for default routes.

As mentioned in the previous subsection, the default
routers are stored on the top-level root node in the rout-
ing tree. In Default Router Selection, it applies a round-
robin policy to pick up the available default router, when
the currently selected default router becomes unreachable.
To achieve this procedure in legacy Linux system, the de-
fault router was pointed by rt6 dflt pointer, which is
guarded by the global lock named rt6 dflt lock, and up-
dated when the current default router becomes unreachable
(Fig. 9).

In this implementation, there were several problems
described below.



YOSHIFUJI et al.: LINUX IPV6 STACK IMPLEMENTATION BASED ON SERIALIZED DATA STATE PROCESSING
433

Fig. 10 New method for route round-robin.

Unfairness
rt6 dflt pointer is reset when routing is modified;
this happens very often and routers are not equally se-
lected.

Lack of Generic Route Selection Mechanism
It is important to select appropriate route from multi-
ple routes with some selection strategy and/or policy.
The mechanism in “Default Router Preferences, More-
Specific Routes, and Load Sharing” [3] would be a
good candidate for it. Because rt6 dflt pointer is
static, single variable, it is only for the default routes
(::/0) and the logic can not be applied to the generic
route selections. We require a generic and appropriate
mechanism to achieve it.

Metrics
Legacy Linux treats metrics for default routes, in other
way than in normal routes. However, we rather propose
to treat the default routes as normal routes. It is better
to eliminate the special handling of metrics against the
default routes.

To achieve this design goal, we introduced a new
generic round-robin mechanism. We apply the round-robin
for routes with the same metric, when a route in that set is
used (Fig. 10). For the 2-bit “preference” of routes, which is
advertised by routers, by means of the “Router Selection”
proposal [3], we introduced new flags for the preference
rather than we take up its reside in the metric, so that we
can simplify other logic, e.g. routing table updating against
the reception of RA message.

The proposed mechanism is as follows: When a route
is looked up, we select the first entry with the highest prefer-
ence in “probably reachable” state among the NCEs. Then,
we move the selected route to the tail of the set of routes
which are with the same metric as the selected one has.
Then, the selected route is returned to the calling process.
By this way, we can select the most appropriate route from
multiple routes.

5. State Processing in IP Packet Transformer

The role of IP is to transfer datagrams from the source node
to the destination node. In a traditional manner, it is enough
to transfer the IP packets in an as-is way. However, in these
days, we have to “transform” the IP packets at the interme-
diate nodes, in order to execute wide variety of new func-
tions. The security functions, such as authentication or en-
cryption, are the typical examples. We need an implemen-
tation methodology, that is effective, flexible and extendable

against such various “transformations.”
In this section, we describe how the Serialized Data

State Processing design applies to the generic IP Packet
transformations. In this case, the process of state transition
for each single transformation such as AH, ESP or IPComp
(IP Compression) [13] is serialized. For example, the pro-
cessing of IPsec in Linux can be integrated into the frame-
work of IP Packet Transformer (i.e., XFRM), which is one
of the instance or implementation methods of the Serial-
ized Data State Processing design. We also show how we
can naturally apply this methodology to the other functions,
such as Mobile IP.

5.1 Stackable Destination and XFRM

New framework for IP packet processing has been intro-
duced into Linux 2.5.x IPsec implementation, i.e., process-
ing of Authentication Header [6] and/or Encapsulating Se-
curity Payload [7]. This methodology is called as “XFRM”
or “Stackable Destination.”

XFRM stands for transformer. The fundamen-
tal data structures of XFRM are xfrm policy{} and
xfrm state{}. Each data structure represents the IPsec Pol-
icy (SP) and the Security Association (SA), respectively.
xfrm policy{} includes the Security Policy Database
(SPD), and xfrm state{} includes the Security Associa-
tion Database (SAD). The xfrm state{} is associated with
xfrm policy{} via xfrm tmpl{}, that represents the tem-
plate for packet transformation.

Stackable Destination (SD) is the infrastructure for
packet transformation in the output path. It looks like a
kind of linked list of dst{}. This list is created temporar-
ily and cached according to the policy. dst{} has its own
output method, output, and it transforms the packet in con-
junction with xfrm state{}, which represents the state of
transformer.

The netlink [12] infrastructure is used as a native user
interface to maintain SAD and SPD. In addition to this na-
tive interface, the standard PF KEY [8] interface for SAD,
and the PF KEYKAME [5] extension for SPD are supported.

5.2 Address Family Independent XFRM Infrastructure

Since core functionality of the XFRM engine is common
among address families (AF) (e.g. IPv6 and IPv4), AF inde-
pendent XFRM infrastructure is introduced.

Instance of AF specific XFRM engine is instanti-
ated by registering AF specific information tables, e.g.
xfrm policy afinfo{} or xfrm state afinfo{}, to the
core XFRM engine. Common variables are also passed via
the tables.

5.3 Packet Processing Details

In this subsection, we describe the details of packet process-
ing.



434
IEICE TRANS. COMMUN., VOL.E87–B, NO.3 MARCH 2004

Fig. 11 IPsec output process with XFRM and SD.

5.3.1 Output Path

The output process of IPsec fully uses this architecture
(Fig. 11). The following functions are sequentially called;

1. xfrm lookup(),
2. xfrm tmpl resolve(),
3. xfrm bundle create() and dst output().

First, xfrm lookup() looks up the xfrm policy{} in
SPD after the routing resolution. At this moment, the pa-
rameter dst{} in the stack points out the original dst{} struc-
ture. xfrm tmpl resolve() is called in xfrm lookup()
in order to resolve the xfrm tmpl{} in xfrm policy{}
which represents how the packet is processed and finds the
set of xfrm state{} for it. This process corresponds to the
looking up of IPsec SA (or IPsec SA bundle if multiple SA
are needed) matched with the IPsec policy.

Then, xfrm bundle create() creates the Stackable
Destination. This corresponds to creating of IPsec SA (or
SA bundle).

Finally, dst output() is called after the building up
of the packet. Each output routine specified by the function
pointer in the dst{} is called along with the chain of dst{}
by popping up the dst{}. This pointer points out, for exam-
ple, esp6 output(). The output function is able to use the
xfrm state{} from the dst{} pointer in sk buff{}. As a
result, the original dst{}’s output function is called and the
packet is transmitted.

5.3.2 Input Path

The input process for IPsec is simpler than the output pro-
cess (Fig. 12).

As all other extension header handlers and protocol

Fig. 12 IPsec input process with XFRM.

Table 2 Summary result of TAHI conformance test (Linux 2.5.58, %).

Test Series Pass Warn Fail

ipsec 95 2 3
ipsec4 98 2 0

ipsec4-udp 96 4 0

handlers are registered with inet6 protos[] during the
initialization phase, the processing routines for AH and ESP
are also registered to inet6 protos[] during the initiation
phase.

When a packet arrives at the input handler, the kernel
parses the received packet from the head so as to call the
appropriate handler based on the registration table informa-
tion.

Each handler of IPsec protocol looks up xfrm
state{}. If the other function succeeds, the xfrm state{}
pointer is kept in sec path{}, which is in sk buff{}. Here,
sk buff{} contains the packet itself.

Finally, xfrm policy check() is called at the en-
trance of upper layer process. In xfrm policy check(),
the kernel compares xfrm tmpl{} in xfrm policy{} and
xfrm state{} in sec path{}, so as to determine if the re-
ceived packet is allowed for delivery.

5.4 Conformance Test Results

On 24th April, 2003, Tom Lendacky reported test results of
Linux 2.5.x IPsec to netdev mailing list. The result is shown
in Table 2.

5.5 Application to Mobile IP

In the previous subsection, we showed that the XFRM in-
frastructure and the Stackable Destination are the promis-
ing implementation schemes for IPsec. In this subsection,
we describe the feasibility of this implementation scheme to



YOSHIFUJI et al.: LINUX IPV6 STACK IMPLEMENTATION BASED ON SERIALIZED DATA STATE PROCESSING
435

Fig. 13 Mobile IP using XFRM/Stackable destination scheme.

Mobile IPv6 [4], as well.
Figure 13 shows the operational diagram for Mobile IP

implementation using XFRM/Stackable Destination infras-
tructure.

In this implementation, we introduce another set of
policies for Mobile IP. These policies are controlled by the
mobility daemon in user space based on the Binding Update
information. The policy describes the type of transforma-
tion (e.g. appending Home Address Option in the destina-
tion options header) and the corresponding binding data (i.e.
Care-of Address and Home Address).

The xfrm bundle create() compiles multiple tem-
plates into the single Stackable Destination, taking into ac-
count the flow of the process. When we assume the case
where AH, ESP and Mobile IP co-exist in the header, the
Stackable Destination should be constructed as follows.

• Mobile-IP Dest1, which inserts Care-of Address into
the packet.
• Mobile-IP Rthdr, which inserts routing header (type 2)

into the packet.
• ESP, which encrypts the packet after the destination op-

tions header for Home-Address option.
• AH, which generates authentication data for the packet

and insert it after the destination options header.
• Mobile-IP Dest2, which swaps Care-of Address and

Home Address in the packet.

6. Conclusion

In this paper, we have introduced the Serialized Data State
Processing design into the implementation of various IPv6

functions for legacy Linux system. The Serialized Data
State Processing approach is a kind of combination among
the simple self-managed data object, where one or more data
objects are combined by directed links and the set of ob-
jects working all together. When we define the objects and
their topology appropriately, we can eliminate the unessen-
tial (external) referencing against the other objects, while
maintaining the object independency. In particular, when we
can define the linear topology, we can easily eliminate the
conflicts of resource dependency which frequently causes
the deal locks.

First, we described the management structure of Neigh-
bor Cache Entry. Second, we described the management
structure of default router list, so that the processing of de-
fault router list is the same procedure for the normal routes.
Third, we described the XFRM based implementation for
IPsec and Mobile IP. Here, the XFRM is an instance of the
proposed Serialized Data State Processing design.

We can show that the proposed design is simple and
extendable. The implementation described in this paper has
been integrated into the globally available Linux distribu-
tion, as the USAGI Project IPv6 stack.

References

[1] 6bone, 6bone Home Page, http://www.6bone.net
[2] S. Deering and R. Hinden, “Internet protocol, version 6 (IPv6) spec-

ification,” RFC2460, Dec. 1998.
[3] R. Drave and R. Hinden, “Default router preferences, more-specific

routes, and load sharing,” IETF Internet-Draft, June 2002.
[4] D. Johnson, C. Perkins, and J. Arkko, “Mobility support in IPv6,”

IETF Internet-Draft, June 2003.
[5] KAME Project, “KAME project Web page,” http://www. kame.net
[6] S. Kent and R. Atkinson, “IP authentication header,” RFC2402, Nov.

1998.
[7] S. Kent and R. Atkinson, “IP encapsulating security payload (ESP),”

RFC2406, Nov. 1998.
[8] D. McDonald, C. Metz, and B. Phan, “PF KEY key management

API, version 2,” RFC2367, July 1998.
[9] Microsoft Corporation, Windows XP Home Page, http://www. mi-

crosoft.com/windowsxp/
[10] T. Narten, E. Nordmark, and W. Simpson, “Neighbor discovery for

IP version 6 (IPv6),” RFC2461, Dec. 1998.
[11] J. Postel, “Internet protocol,” STD0005, Sept. 1981.
[12] J.H. Salim, H. Khosravim, A. Kleen, and A. Kuznetsov, “Netlink as

an IP services protocol,” RFC 3549, July 2003.
[13] A. Shacham, B. Monsour, R. Pereira, and M. Thomas, “IP payload

compression protocol (IPComp),” RFC3173, Sept. 2001.
[14] K. Sklower, “A tree-based packet routing table for Berkeley Unix,”

in USENIX Winter, pp.93–104, Dallas, TX, 1991.
[15] Sun Microsystems, Inc., Solaris Operating System, http://wwws.sun.

com/software/solaris/
[16] TAHI Project, Test and Verification for IPv6, http://www.tahi.org
[17] The FreeBSD Project, The FreeBSD Project, http://www.

freebsd.org
[18] The Internet Society, Internet Engineering Task Force, http://www.

ietf.org
[19] S. Thomson and T. Narten, “IPv6 stateless address autoconfigura-

tion,” RFC2462, Dec. 1998.
[20] USAGI Project, USAGI Project Web Page, http://www.linux-

ipv6.org



436
IEICE TRANS. COMMUN., VOL.E87–B, NO.3 MARCH 2004

Hideaki Yoshifuji was born in Tokyo,
Japan. He received the B.Eng., and M. of Infor-
mation Sciences from Tohoku University, Sen-
dai, Japan, in 1999 and 2001, respectively. He
works for USAGI Project as core member since
its establishment in 2000. Now he is a Ph.D.
candidate at the University of Tokyo. He is
one of Linux co-maintainers of networking area,
since 2003.

Kazunori Miyazawa received B and M
from Meiji University in 1997 and 1999, respec-
tively. He joined Yokogawa Electric Corpora-
tion. He joined USAGI Project since 2000.

Masahide Nakamura received the B.E. and
M.E. from Keio University in 1998 and 2000,
respectively. He joined Hitachi, Ltd. in 2001,
and then he was transferred to Hitachi Commu-
nication Technologies, Ltd. in 2002 when it was
established. He works for USAGI Project as
core member since 2002.

Yuji Sekiya was received B.E. from Kyoto
University in 1997 and received M.E. from Keio
University in 1999. He belongs to Information
Technology Centre in the University of Tokyo
since Oct. 2002. His major research topics are
IPv6 and DNS. He works for USAGI Project as
core member since its establishment.

Hiroshi Esaki received the B.E. and
M.E. degrees from Kyushu University, Fukuoka,
Japan, in 1985 and 1987, respectively. And, he
received Ph.D. from University of Tokyo, Japan,
in 1998. In 1987, he joined Research and De-
velopment Center, Toshiba Corporation, where
he was engaged in the research of ATM sys-
tems. From 1998, he works for University of
Tokyo as an associate professor, and works for
WIDE project as a board member. He was at
Bellcore in New Jersey (USA) as a residential

researcher from 1990 to 1991, and was engaged in the research on high
speed computer communications. From 1994 to 1996, he was at CTR (Cen-
ter for Telecommunications Research) of Columbia University in New York
(USA) as a visiting scholar. He is currently interested in a high speed in-
ternet architecture, including MPLS technology, a mobile computing, and
IPv6.

Jun Murai is Professor, Faculty of Environ-
mental Information, Keio University. Born in
March 1955 in Tokyo. Graduated Keio Univer-
sity in 1979, Department of Mathematics, Fac-
ulty of Science and Technology, MS for Com-
puter Science from Keio University in 1981, re-
ceived Ph.D. in Computer Science, Keio Univer-
sity, 1987. Director, Keio Research Institute at
SFC. The President of Japan Network Informa-
tion Centre (JPNIC). He is appointed as one of
the advisory Member of IT Strategy Headquar-

ters establised within the Cabinet since August 2000. Adjunct Professor at
Institute of Advanced Studies, United Nations University. He also teaches
at Tokyo University of Art and Music. Specialized in computer science,
computer network and computer communication. His recent publications
include “Internet II,” Iwanami Shoten, Publishers, July 1998, “Evolution
and Revolution of the Internet in Japan,” Proc. of CyberJapan: Technology,
Policy Society Symposium, The Library of Congress, May, 1996.


