
USAGI IPv6 IPsec Development for Linux

Mitsuru Kanda
Toshiba Corporation

Communication Platform Laboratory
Corporate Research & Development Center

mk@isl.rdc.toshiba.co.jp

Kazunori Miyazawa
Yokogawa Electric Corporation

Corporate Research and Development Headquarters
Advanced Solitions Research Center
Kazunori.Miyzawa@yokogawa.com

Hiroshi Esaki
The University of Tokyo

Graduate School of Information Science and Technology
hiroshi@wide.ad.jp

Abstract

USAGI project[4] was founded to improve and develop
Linux IPv6 stack. We also developed (IPv6) IPsec stack for
Linux kernel 2.4 and 2.6 series. we present our (IPv6) IPsec
implementation (PEKEY, IPsec Security Association, Se-
curity Policy, output processing, and input processing) for
both 2.4 and 2.6.

1 Introduction

IPsec is an archtectural system to provide security ser-
vices in IP layer. On IPv4 IPsec, it is difficult to introduce
because we have to retorofit the existing TCP/IP(v4) stack.
But on IPv6 IPsec, it is embedded as a standard feature in
the IPv6 specification, which means it’s easy to deploy with
IPv6. Linux kernel has been included the IPv6 basic feature
set since version 2.2. Unfortunately IPv6 IPsec was lacking
in it. But the IPv4 IPsec stack is provided by FreeS/WAN
project[2] as separated from the mainline kernel (but a lot
users who need IPv4 IPsec are using it).

At the beginning of the USAGI project, we discussed the
design of the IPsec stack and decided to develop a Linux
kernel 2.4 IPsec stack both IPv6 and IPv4 from scratch.

Since Linux kernel 2.5 series, new networking architec-
ture was introduced, called XFRM and/or Stackable Desti-
nation. The latest Linux kernel version 2.6 supports IPsec
both IP versions by using XFRM.

In this paper, we’d like to talk about IPsec implementa-
tion for Linux kernel 2.4 and 2.6, then talk about our plan
to develop a new key exchange daemon ’Racoon2’ in near
the future.

2 IPsec

IP Security (IPsec) architecture is described in
RFC2401[8]. IPsec consists of an IP packet process-
ing part and a key exchanging part. IPsec processes a
packet based on IPsec Security Policy(SP) and IPsec Secu-
rity Association(SA). SP indicates which packet should be
applied with IPsec, bypassed or dropped. When a packet is
indicated ’apply IPsec’ by SP, IPsec stack process a packet
with some parameters SA includes. SA is identified by a
set of an IP destination address, an IPsec protocol and a
Security Parameter Index(SPI). SA includes its identifier,
algorithm, key, anti-replay counter, lifetime and so on. SA
itself represents one IPsec protocol. If we want to apply a
packet to multiple IPsec protocols(e.g., AH+ESP), we use
more than one SA (called SA bundle). SA is stored in IPsec
Security Association Database(SAD). SP is stored in IPsec
Security Policy Database(SPD).

There are transfer mode and tunnel mode in IPsec archi-
tecture. IPsec transfer mode is used for End-to-End com-
munication. IPsec tunnel mode is mainly used for Security
Gateway(SWG) to Security Gateway (e.g.,VPN1).

PF KEY[9] interface is used to register/unregister SA
parameters with SAD by the system administrator and the
key exchange daemon. In addition, some implementations
extend it to register/unregister SP with SPD because there
is no specification for SPD interface.

IPsec defines two packet formats, AH and ESP. AH is
described in RFC2402[6], which provides connectionless
integrity and data origin authentication for whole IP packet.
ESP is described in RFC2406[7], which provides confiden-
tiality, data origin authentication, connectionless integrity.

1Virtual Private Network



To exchange IPsec key automaticaly, a lot of IPsec sys-
tems use Internet Key Exchange Protocol(IKE[5]).

3 IPsec implementation for kernel 2.4

In the Linux IPv4 IPsec world, a lot of people use
FreeS/WAN project’s implementation. It consists of an in-
kernel IPsec processing part, Key Exchange daemon ’Pluto’
and some utility commands/scripts.

To run Pluto with small changes on our IPsec ker-
nel implementation and reduce impact for user who use
FreeS/WAN implementation, we have decided to keep com-
patibility with FreeS/WAN’s IPsec programming interface
between kernel and userland. For this, we use the same
PF KEY interface which FreeS/WAN project extended.

In kernel IPsec packet processing part, we developed
AH, ESP, SAD and SPD from scratch.

3.1 PF KEY interface

PF KEY(v2), which is described in RFC2367, is key
management API mainly for IPsec. PFKEY is used for
handling the IPsec Security Association Database. Ad-
ditionally we have to handle the IPsec Security Policy
Database, but there is no standard for the IPsec Security
Policy management API. In FreeS/WAN implementation,
PF KEY interface is extended to manage the IPsec Secu-
rity Policy Database. Our kernel 2.4 IPsec implementation
also uses the same PFKEY interface as FreeS/WAN’s one.
It is important to be able to run the FreeS/WAN’s userland
application (e.g., Pluto) with small changes.

3.2 Encryption and Authentication algorithm

We provide HMAC-SHA1 and HMAC-MD5 for authen-
tication, NULL, DES-CBC, 3DES-CBS and AES for en-
cryption. We thought encryption and authentication algo-
rithm is not only used by IPsec and there are many algo-
rithms so that we consider encryption and authentication al-
gorithm and those interface should have good modularity.
We adopted cipher modules which provided by CryptoAPI
Project[1].

3.3 Security Association and Security Policy

SA and SP themselves don’t depend substantially on the
IP version. FreeS/WAN project architecture depends on
their special virtual network interface for IPsec because it
might focus on IPv4 tunnel mode (Their implementation
also provides IPv4 transport mode). Their SA, SP, SAD and
SPD also depend on their special virtual network interface.
We considered and decided it was not suit to IPv6 because
the IPv6 stack needed the neighbor discovery and the auto

address configuration in its basic specification. If we had
implemented IPv6 IPsec stack with their architecture, we
had to implement those basic specification in their special
virtual network interface. Therefore we implemented our
own SAD and SPD in order to handle both IPv4 and IPv6.

To improve the system performance, Each database will
be locked by smallest granularity. And in many cases we
use the ’read lock’. SA and SP are managed by the reference
counter to prevent used SA from removing by accident.

3.4 IPsec Packet Processing

3.4.1 Output

There are various packet output paths from the IP(v4/6)
layer to the network driver layer in Linux kernel net-
working stack (TCP, UDP/ICMP, and NDP[10] for IPv6).
The packets which may be applied IPsec will go
through these paths. We had to add IPsec functional-
ity for these output paths, e.g, in IPv6ip6 xmit()
for TCP, ip6 build xmit() for UDP/ICMP and
ndisc send ns() /ndisc send rs() for neighbor
discovery packets.

Output process is as follows (as shown in Figure1):

1. check IPsec SP

2. lookup the IPsec SA by the IPsec SP

3. apply IPsec processing to the packet

4. output the packet to the network driver layer

To reduce SA searhing time, we link the SP and the
found SA after lookup from the first time.

Find policy

IPsec
processing

SPD SP SADB SA

write_lock

read_lock

read_lock

Find SA
regarding to
above policy
(first time only)

read_lock

read_lock

Figure 1. IPsec Output flow



3.4.2 Input

At input, there is only path for IP packets. We added IPsec
processing part inip6 input finish() .

Input process is as follows (as shown in Figure2):

1. receive the packet

2. lookup the IPsec SA by SPI(which resides in AH/ESP
header)

3. check integrity and decrypt

4. check IPsec Policy

Find SA

IPsec
processing

Check 
policy

SPD SP SADB SA

write_lock

read_lock

read_lock

read_lock

read_lock

Figure 2. IPsec Input flow

3.5 IPsec Tunnel mode

We are using IPv6-over-IPv6(and IPv4-over-IPv4) vir-
tual tunnel device to implement IPsec tunnel mode. This
implementation can avoid to duplication code of encapsula-
tion/decapsulation outer IP header compairing with having
these code in the IPsec processing part itself. The virtual
tunnel device is not different from the normal IP-over-IP
virtual tunnel device in Linux.

4 IPsec implementation for kernel 2.6

In October 2003, we submitted our IPsec code to Linux
kernel network maintainers(David S. Miller and Alexey
Kuznetsov) for kernel 2.52. At the same time, they were
thinking about introducing the new network architecture
which was included IPsec support. They liked our imple-
mentation for it’s simplicity but they thought several de-
tails should be handled very much differently. As the result,

2kernel version 2.5 series is development version for next stable version
2.6

unfortunately our implementation was not merged into the
mainline kernel.

The most important difference between ours and them is
SAD/SPD part. They thought the whole SPD/SAD mecha-
nism should be flow cache based lookup system shared by
IPv4 and IPv6. One month later, they introduced the new
network architecture called ’XFRM’ to Linux kernel 2.5.
At first their developing code lacked IPv6 IPsec only for
IPv4 IPsec. In order to suport IPv6 IPsec, we have imple-
mented IPv6 IPsec code based on XFRM (and discarded our
original code).

4.1 PF KEY interface

The PFKEY interface of Linux kernel 2.6(and 2.5) is
compatible with KAME[3] PFKEY interface. We can use
’setkey’ command for configuring SA and SP and ’Racoon’
for IKE. Additionally we can add IPsec Policy each socket
via Netlink3. They have suported only IPv4 in their first
code, we have added IPv6 support.

4.2 Security Association and Security Policy

On the XFRM architecture, IPsec SP, which is rep-
resented asxfrm policy structure, will be bound to
the routing flow cache (and IPsec policy will point
IPsec SA bundle) and IPsec SA, which is represented as
xfrm state structure, is included in destination cache,
dst entry structure. The chaining destination cache
means IPsec SA bundle.

4.3 IPsec Packet Processing

4.3.1 Output

The output part of the XFRM architecture is placed between
the IP layer and the network driver layer. In general, non
IPsec packet will be passed to the network driver layer by a
single destination output function, which is resolved routing
lookup. But IPsec packet will be need to apply some IPsec
processing (e.g., encryption, hash). XFRM functions make
a chain of destination output functions (We call Stackable
Destination, as shown in Figure3). Each function match
each IPsec processing (AH, ESP and IPcomp[11]).

To be more specific, in order to pass a packet to the net-
work driver layer we have to do as follows (as shown in
Figure4):

1. lookup routing table to decide output function by
ip6 route output()

2. lookup IPsec Security Policy

3Netlink is used to transfer network information between kernel and
userland applications.



3. lookup IPsec Security Association(s) suitable for IPsec
Security Policy and create destination chain

4. to apply IPsec, pass a packet to the destination chain

dst_output()

dst_entry{}

output()

child dst_entry{}

output()

child dst_entry{}

output()

child

(e.g., ESP)

(e.g., AH)

(e.g., IPcomp)

xfrm_policy{}

xfrm_vec xfrm_templ(AH)

xfrm_templ(ESP)

xfrm_templ(IPcomp)

xfrm_state(AH)

xfrm_state(ESP)

xfrm_state(IPcomp)

xfrm

xfrm

xfrm

Figure 3. Stackable Destination

ip6_dst_lookup()

ip6_route_output()

xfrm_policy_lookup()

flow_cache_lookup()

xfrm_tmpl_resolve()

xfrm_bundle_create()

xfrm_find_bundle()

ip6_xmit()

dst_output()

xfrm_lookup()

or

lookup IPsec Policy lookup

lookup IPsec SA

create output chain(dst chain)

call output chain(dst chain)

lookup routing table(normal dst)

Figure 4. XFRM output flow

4.3.2 Input

The input part of the XFRM architecture is simpler than out-
put. The XFRM input function is handled as same as upper
layer protocols like TCP, UDP, etc. In IPv6, IPsec headers
are defined as IPv6 extension header but IPsec input func-
tions are handled as an upper layer protocol handler. As the
result of introducing IPv6 IPsec input processing in Linux
kernel, inconsistencies existed between IPsec headers and

other IPv6 extension headers. In order to resolve this, we
moved to the other IPv6 extension header handler functions
to upper layer protocol handler. In detail, we registered
IPsec header (both AH and ESP) handler functions with up-
per layer protocol handler arrayinet6 protos[] .

Incoming IPsec packet processing flow is as follows (as
shown in Figure5):

1. process IP packet from IP header in sequence

2. process IPsec part (check integrity and decrypt) if
founded

3. check IPsec Security Policy

4. pass IP packet next handler

xfrm6_rcv() tcp_v6_rcv()

inet6_protos[]

...

xfrm6_policy_check()

IP layer

esp6_input()

ah6_input()

xfrm6_state_lookup() lookup IPsec SA

process AH

process ESP

check IPsec Policy 

Figure 5. XFRM input flow

4.4 IPsec Tunnel mode

Linux kernel 2.6 IPsec tunnel mode doesn’t use the vir-
tual tunnel device to create tunnel. The IPsec stack builds
the outer IP header during IPsec processing by itself.

5 Future Work

The XFRM architecture is not only for IPsec but also
for other extension headers processing such as Mobile IPv6.
We will improve the XFRM architecture to make it be more
flexible.

At IETF IP Security working group (IPsec wg), New In-
ternet Key exchange protocol (IKEv2) is now discussed. In
order to catch up with the New version of IKE, we have a
plan to develop the new key exchange application, Racoon2.
IKE is not only Key Exchange protocol for IPsec. Racoon2
will support for multiple Key exchange protocols IKEv1,
IKEv2 and Kink.



And also at IETF IPsec wg, new versions of ESP and AH
is discussed. we will catch up with them as well.

6 Conclusion

From the new Linux kernel stable version 2.6, we will
able to use IPsec by default, there will be no need to add
extra patches, recompile kernel.

References

[1] CryptoAPI Project. http://www.kerneli.org/.
[2] FreeS/WAN Project. http://www.freeswan.org/.
[3] KAME Project. http://www.kame.net/.
[4] USAGI Project. http://www.linux-ipv6.org/.
[5] D. C. D. Harkins. The Internet Key Exchange. RFC2409,

November 1998.
[6] S. Kent and R. Atkinson. IP Authentication Header.

RFC2402, November 1998.
[7] S. Kent and R. Atkinson. IP Encapsulating Security Payload.

RFC2406, November 1998.
[8] S. Kent and R. Atkinson. Security Architecture for the In-

ternet Protocol. RFC2401, November 1998.
[9] D. McDonald, C. Metz, and B. Phan. PFKEY Key Man-

agement API, Version 2. RFC2367, July 1998.
[10] T. Narten, E. Nordmark, and W. Simpson. Neighbor Dis-

covery for IP Version 6 (IPv6). RFC2461, December 1998.
[11] A. Shacham, B. Monsour, R. Pereira, and M. Thomas. IP

Payload Compression Protocol. RFC3173, September 2001.


