
Received August 6, 2020, accepted August 31, 2020, date of publication September 10, 2020, date of current version September 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3023156

Fast Longest Prefix Matching by Exploiting
SIMD Instructions
YUKITO UENO 1,3, RYO NAKAMURA2, YOHEI KUGA2, AND HIROSHI ESAKI1, (Member, IEEE)
1Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-0033, Japan
2Information Technology Center, The University of Tokyo, Tokyo 113-0033, Japan
3Innovation Center, NTT Communications, Tokyo 108-8118, Japan

Corresponding author: Yukito Ueno (eden@g.ecc.u-tokyo.ac.jp)

ABSTRACT Longest prefix matching (LPM) is a fundamental process in IP routing used not only in
traditional hardware routers but also in software middleboxes. However, the performance of LPM in software
is still insufficient for processing packets at over 100 Gbps, although previous studies have tackled this
issue by exploiting the CPU cache or accelerators such as GPUs. To improve the performance of software
LPM further, we propose a novel LPM method called Spider, which exploits a single-instruction multiple-
data (SIMD) mechanism in the CPU. Spider achieves performing LPM for up to 16 destination IP address
in parallel by a routing table structure carefully designed for processing by the SIMD instructions. We
evaluated Spider from the following three perspectives: the improvement of LPM performance derived
from the parallelism provided by the SIMD mechanism, performance comparison with other methods, and
performance scalability. The evaluation shows that Spider dramatically improves the LPM performance,
which reaches 1.8–3.2 times compared with the state-of-the-art methods. Moreover, Spider achieves 5,074
million lookups per second with 16 CPU cores, which is equivalent to the processing capacity of 3.4 Tbps
in short packets; the performance opens up the possibility of packet processing at the terabit-class rate by
software.

INDEX TERMS IP routing, longest prefix matching (LPM), single-instruction multiple-data (SIMD),
software middlebox.

I. INTRODUCTION
Longest prefix matching (LPM) is a fundamental process
of IP routing in both hardware routers and software mid-
dleboxes. In recent commercial IP networks, 100 Gbps is a
mainstream interface speed, and 400 Gbps has been emerging
to deliver terabit-class service traffic. Thus, both hardware
routers and software middleboxes need to perform LPM at
a speed that can accommodate multiple of the 100 Gbps
interfaces. Hardware routers have already been able to per-
form LPM at that speed using dedicated mechanisms such as
ternary content addressable memory (TCAM) or a network
processor unit. On the other hand, software LPM cannot
deliver as much performance as hardware, although software
middleboxes are actively used for various use cases, e.g., net-
work function virtualization (NFV) [1], [2], software routers
for backbone networks [3], and software-defined WAN [4].
Because the software middleboxes need to process LPM in
software, improving the performance of LPM in software

The associate editor coordinating the review of this manuscript and

approving it for publication was Barbara Masini .

is the key to achieve these use cases while satisfying the
communication speed requirement.

A major approach for fast LPM in software is to shorten
the time for looking up a destination IP address by lever-
aging the CPU cache to minimize the latency for accessing
data [5]–[12]. Although their performance has not reached
the speed of a multiple of the 100 Gbps interfaces yet, their
further performance improvement would be limited because
they have thoroughly exploited the CPU cache, and so their
remaining improvement factor is the increase of the CPU
frequency, which has stagnated [13].

To clarify the potential of the state-of-the-art methods for
faster LPM, we measured and estimated the LPM perfor-
mance of the methods based on CPU frequencies. Figure 1
shows the performance of the recent LPM methods, i.e.,
Poptrie [10], DXR [11], and our LPM method on a sin-
gle CPU core, along with the CPU frequency changes. The
x-axis and y-axis indicate the LPM performance in a million
lookups per second (Mlps) and latency for a single LPM
iteration, respectively, according to the CPU frequencies.
The points at 1.0, 2.1, and 3.7 GHz are measured values in

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 167027

https://orcid.org/0000-0002-4119-0678
https://orcid.org/0000-0002-1094-1985


Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

FIGURE 1. The performance of the recent LPM methods and our LPM
method along with the CPU frequency changes. The lookup rate of the
proposed LPM method named Spider is estimated to overcome 400 Gbps
wire-rate when the CPU frequency reaches 5.0 GHz. The numbers
attached to each method name in the legend mean method-specific
settings, which are described in Section V.

Section V-D and V-E.Moreover, based on the CPU cycles per
LPM iteration of each method (measured in § V-D) and the
constant increase of the lookup rate of each method to CPU
frequencies (measured in § V-E), we plot estimated lines and
values if the CPU frequency is 5.0 GHz. The formulas for the
estimation are

Latency per iteration (ns)

=
1 (GHz)
t (GHz)

× CPU cycles per iteration,

Lookup rate (Mlps)

= t (GHz)×
Lookup rate at 1 GHz (Mlps)

1 (GHz),

where t (GHz) is the arbitrary CPU frequency. Besides,
because the latency per iteration and the lookup rate are
mediated by the t (GHz), the estimated performance along
with the CPU frequency changes can be expressed by

Latency per iteration (ns)

=
CPU cycles per iteration×Lookup rate at 1 GHz (Mlps)

Lookup rate (Mlps).

The equation indicates that the latency per iteration is
inversely proportional to the lookup rate, as shown in
Figure 1. Therefore, when the latency per iteration of the
LPM methods is lower, the lookup rate would be higher.

The figure indicates that the state-of-the-art methods min-
imizing the latency per iteration face an asymptotic limit on
the latency. The thorough optimization focusing on the use
of the CPU cache results in a situation where the process-
ing of the CPU instructions is the bottleneck, which never
disappears. Moreover, the measured and estimated values in
the figure suggest that the increase of the CPU frequency
does not bring sufficient performance gain for the methods.
The lookup rates at 3.7 GHz of the Poptrie18 and D18R do
not overcome the 200 Gbps wire-rate. If the CPU frequency
becomes 5.0 GHz, their performance gain is still insuffi-
cient to achieve the 400 Gbps wire-rate, although further

performance improvement on their approach relies on the
increase of the CPU frequency. Using multiple CPU cores
certainly increases the total lookup rate of LPM by a dozen
times, according to the number of CPU cores. This approach
is practical; however, it requires distributing multiple flows
among multiple cores. Thus, the throughput of a single flow
cannot achieve 200 and 400 Gbps link speeds if the lookup
rate of LPM on a single CPU core is insufficient.

To overcome the limit of the recent methods, we propose a
novel LPM method called Spider, which exploits the single-
instruction multiple-data (SIMD) mechanism in the CPU.
The approach of Spider is to parallelize the LPM procedure
inside a single CPU core to increase the throughput for
lookup, not to minimize the latency for it, as in previous
work. A single iteration for LPM in Spider processes up to
16 destination IP addresses at the same time. As shown in
Figure 1, Spider achieves far higher lookup rates than other
methods while requiring longer latency to process a single
lookup as a CPU-based method due to the characteristics
of SIMD instructions. When the CPU frequency reaches
5.0 GHz, Spider is estimated to overcome the 400 Gbps
wire-rate.

This work introduces new contributions in three main
points, although our previous work [14] has already proposed
the basic concept of Spider. First, we provide a more detailed
explanation of the concept of Spider (§ III). Second, we
discuss considerations when applying Spider to real-world
packet processing applications (§ IV). In that section, we
show that Spider can support IPv6 LPMwhile keeping its per-
formance advantage. Third, we demonstrate the usefulness
of our approach by intensive evaluations of Spider and recent
software LPMmethods frommultiple perspectives (§ V). The
evaluation is also extended from our previous work to reveal
more detailed characteristics of Spider, including the appli-
cability to real-world packet processing applications (§ V-C),
the CPU cycles to process the lookup procedure (§ V-D), and
the performance under different CPU frequencies (§ V-E). In
summary, the new contributions compared with our previous
work are as follows:
• A more detailed explanation of the concept of Spider.
• Discussion about the considerations to apply Spider to
real-world packet processing, including IPv6 support.

• Intensive evaluations of Spider and recent software LPM
methods from multiple perspectives.

The evaluation shows that Spider achieves major improve-
ment (1.8–2.6 times for IPv4, and 2.2–3.2 times for IPv6)
compared with the state-of-the-art methods and delivers the
processing capacity of 34 ports of 100 Gbps interface with 16
CPU cores. The performance improvement of Spider opens
up the possibility of packet processing at the terabit-class rate
by software.

II. RELATED WORK
Maximizing the performance of LPM has been one of the
most fundamental research topics in the IP networking area.
LPM methods have been studied for both hardware and

167028 VOLUME 8, 2020



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

software approaches because their application fields are dif-
ferent. For example, using hardware routers has been a com-
mon way to achieve traffic engineering and ensure Quality of
Service (QoS) with feature-rich protocols such asMPLS [15],
[16] in career networks for a long time. On the other hand, the
software middleboxes and their platforms have been actively
developed [17]–[22], and deployed in new areas where the
operators focus on cost-effectiveness and development speed,
such as the NFV infrastructure [1], [2] in data center [23] and
mobile networks [24].

For LPM in hardware, TCAM is the most popular technol-
ogy that provides LPM with predictable latency [25]–[27].
However, TCAM has drawbacks on heat, power consump-
tion, and monetary cost [28]. FPGA is another way to achieve
hardware LPM at lower development cost than TCAM [29].
Bando et al. proposed FlashTrie [30] as an LPM architecture
that is applicable to FPGA, and it supports two million routes
for IPv4 at the lookup rate of 200 Mlps in the paper. Hamid
et al. applied the existing hash-based LPM algorithm [31]
to FPGA [32], which achieves 263 Mlps. Theoretically, the
rate of lookup per second indicates the capacity to support
the same rate of packet processing per second.

For LPM in software, which we focus on, CPU-based
methods have been well studied from the past to the present.
The direction toward faster LPM in the CPU is to mini-
mize latency for each memory access and then improve the
throughput as a result. A binary trie and path-compressed
trie [33] are basic trie-based algorithms for LPM. As the
demand for faster LPM methods increased along with the
interface speed, optimized variants of trie-based algorithms
were proposed [34]–[37]. Eatherton et al. proposed Tree
Bitmap [38], which minimizes the latency of lookup by
reducing the number of memory references. The key tech-
nique to reduce the number of memory references is to com-
press a multiway trie using a bitmap; this concept, which is to
compress the data structure, has affected recent software LPM
methods. Gupta et al. proposed DIR-24-8 [39], focusing on
the fact that the ratio of /24 or shorter prefixes are the majority
on routing tables of ISPs. DIR-24-8 has a data structure
that achieves O(1) lookup for each destination in most cases
by expanding /24 or shorter prefixes into a single array. In
addition, several studies proposed exploiting the Bloom filter
to reduce the number of memory accesses tolerating false
positives [40]–[42].

A common concept of modern software LPM methods
is to exploit the access speed of the CPU cache to achieve
shorter lookup latency [5]–[9]. As a result, they focus on
how to minimize the data structure to fit the routing table
into the CPU cache, as illustrated in the top row of Figure 2.
We observed that most of their routing table fits in the L1
data CPU cache due to the increase of the cache size in the
current CPU, although they initially intended to fit the routing
table into the L3 CPU cache. DXR [11] proposed using a
single large array where shorter length prefixes are directly
expanded. DXR exploits the CPU cache by minimizing the
number and range of memory accesses by its data structure

FIGURE 2. The architecture overview of recent LPM methods including
Poptrie and DXR, GPU-based methods, and our LPM methods. The access
latency and parallelism are reference values from the literature [43]–[45].

design, and it has achieved 115 Mlps for a single CPU core
and random lookup in the paper. Poptrie [10] is also a method
of this sort that inherits the concept of Tree Bitmap to reduce
the latency of lookup. Poptrie uses a variant of a multiway trie
that can omit the memory area for unnecessary child nodes to
fit themultiway trie in the CPU cache. The key idea of Poptrie
is efficiently to count the number of two types of child nodes
by the population count instruction, to omit the memory area
of either type of child node. As a result, Poptrie has achieved
240 Mlps with a random traffic pattern and a BGP full route
as of 2015. Therefore, Poptrie overcomes the 100 Gbps wire-
rate by a single CPU core, but at about 80% of the 200 Gbps
wire-rate. Yang et al. have proposed SAIL [12], which takes
the approach to split LPM into three levels to minimize the
processing steps of its lookup procedure. In Poptrie’s paper,
SAIL achieves 159 Mlps, which is less than the lookup rate
of Poptrie, although SAIL achieves a slightly faster rate than
Poptrie with the BGP full route of 2013 [46].

Another concept of software LPM methods is to uti-
lize discrete GPUs for LPM to maximize the lookup rate.
Transferring data to GPUs involves additional latency due
to communication over PCIe; therefore, GPU-based LPM
methods conceal the latency by transferring many destination
IP addresses at the same time and exploit massive paral-
lelism on GPUs as illustrated in the bottom row of Figure 2.
Han et al. proposed the architecture of a software router
called PacketShader [47], which uses the GPU as a packet
processing accelerator. PacketShader has achieved LPM on
a GPU using DIR-24-8, while it has focused on not only

VOLUME 8, 2020 167029



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

LPM but also the entire architecture of the software router.
While PacketShader treats routing tables as static informa-
tion, Zhao et al. proposed a GPU-accelerated LPM engine
called GALE [48], which provides an incremental update
on the GPU. Li et al. proposed a GPU-based LPM method
called GAMT [45], which aims for both high performance
and scalability. GAMT builds a routing table as a multibit
trie and encodes it into a two-dimensional array, which is
called the state-jump table. According to the optimization on
the routing table, GAMT has achieved over 1,000 Mlps when
16 million destination IP addresses are processed at the same
time. Moreover, several other GPU-based methods have been
proposed [45], [49]–[51], which have a similar tendency to
achieve high lookup rates with large batch sizes.

When considering LPM methods, it is easy to minimize
the size of the routing table and the number of references
to it with IPv4 because its address length is just 32-bit;
however, IPv6 is not, although it is required in the practical
packet processing software. Thus, some LPM methods do
not support IPv6 by design [11], [48]. For example, DXR,
which is a range-based LPM algorithm, does not support IPv6
by design, while focusing on the performance for IPv4 by
exploiting the ratio of shorter prefixes. In addition, GALE,
which is a GPU-based LPM method, does not support IPv6
because it depends on a large array on the GPU memory that
stores all possible prefixes. Moreover, because the perfor-
mance of LPMmethods that rely on the shortness of the IPv4
address would degrade in IPv6 LPM, there is a gap between
simply supporting the functionality of IPv6 LPM and achiev-
ing high performance with it. For example, DIR-24-8 can
support IPv6, and its implementation has been available [21];
however, its performance would not be so high because its
performance depends on the ratio of the shorter prefixes
that fit in a single large array. Moreover, SAIL proposes to
combine its method and a Bloom filter to support the large
IPv6 routing table because its performance would degrade
along with the length of the destination prefixes. Some other
trie-based algorithms such as Poptrie support IPv6; however,
the methods have not shown a clear solution for performance
scalability against the longer address length and larger routing
table of IPv6 LPM.

As this section showed, software LPM has been well stud-
ied; nevertheless, practically achieving the LPM performance
over 100 Gbps is still challenging. The LPM methods in
CPUs have minimized latency for a single lookup by exploit-
ing the CPU cache. However, the performance of Poptrie,
which is the state-of-the-art method in that approach, is insuf-
ficient for accommodating 200 Gbps by a single CPU core.
Because the memory reference part of its lookup procedure
has already been optimized, its further performance improve-
ment depends on the increase of the CPU frequency, which
has stagnated. Moreover, applying the LPMmethods that rely
on the CPU cache to IPv6 is harder than IPv4 because IPv6
LPM requires more memory space for its routing table, which
is too large to fit it in the CPU cache. On the other hand, the
performance of GPU-based methods depends on allowable

FIGURE 3. An example of a state-jump table and its next-hop table:
1.2.3.0/24 and 1.2.3.1/32 are installed, and their next-hops are 172.16.0.1
and 172.16.0.2.

lookup latency, because a large number of IP addresses must
be prepared in advance to conceal the latency of communi-
cation over PCIe. For example, the lookup rate of GAMT
declines to 50 Mlps when the prepared number of destination
IP addresses is less than 4,000. To achieve even faster LPM
practically, we propose yet another approach, which is to
parallelize LPM in a single CPU core.

III. ARCHITECTURE
We propose a novel LPM method called Spider, which
improves the lookup rate of LPM by parallelizing its lookup
procedure inside a single CPU core. Spider leverages SIMD
instructions for the parallelization instead of fitting the rout-
ing table into the higher-level CPU cache, which is the
approach of the previous works. In Spider, a single CPU core
processes up to 16 destination IP addresses, which correspond
with each SIMD way one by one, at the same time reducing
the latency for referencing to its routing table to around 20
nanoseconds because its routing table mostly fits in the L3
CPU cache, as illustrated in the middle row of Figure 2. Its
degree of parallelism is significantly less than the GPU-based
methods; however, Spider does not involve a longer access
latency over PCIe.

The routing table structure of Spider is carefully designed
so that the whole LPM procedure is composed of the SIMD
instructions. The routing table design avoids the following
three operations unsuitable for the SIMD mechanism: bit-
wise operation, pointer referencing, and conditional branch-
ing. Without these operations, it is difficult to compress the
routing table to fit it into the higher-level CPU cache as with
previous methods; instead, by designing the routing table to
be processed without these operations, the SIMD instructions
can efficiently process the routing table in parallel. This
design choice is also suitable to achieve faster IPv6 LPM in
addition to IPv4 because IPv6 LPM requires more memory
space than IPv4. This section describes the design (§ III-A)
of the routing table structure of Spider, the detailed lookup
procedure with the SIMD instructions (§ III-B), and the man-
agement way of route information (§ III-C).

A. ROUTING TABLE DESIGN
We employ a state-jump table [45] as the data structure to
process LPM avoiding the operations that are inefficient with

167030 VOLUME 8, 2020



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

SIMD instructions. A state-jump table is a two-dimensional
array expression of a routing table, which achieves LPMwith
just tracing elements on the array according to the target IP
address; the mechanism avoids pointer referencing, which is
unsuitable for SIMD instructions, in the lookup procedure. In
addition, we employ two contrivances to avoid bit-wise oper-
ations in the lookup procedure: the byte-aligned data length,
and the fixed-length stride of eight. These two conditions
enable processing LPM using only byte-aligned operations
in the lookup procedure.

Figure 3 shows an example of a state-jump table and its
next-hop table of Spider. Each row has 256 elements, the
number of patterns that an 8-bit field can represent; thus, the
column in the state-jump table corresponds with each octet
of the IP address. Besides, each element in a row contains
two 2-byte fields: next-hop index, which represents the index
of the next-hop IP address in a next-hop table, and next-row
index, which represents the index of a row corresponding
with the next octet of the target IP address. If the target IP
address to look up is 1.2.3.1, its LPM procedure starts from
looking at the element at (0, 1). Because the element’s next-
row index is 1 and the next octet of the IP address is 2, the
LPM procedure then looks at the element at (1, 2). Similarly,
the LPM procedure will look at the elements at (2, 3) and
(3, 1) one after another, and the next-hop index obtained at
last, which is 2 in this case, is the result of LPM.

In the state-jump table of Spider, we prepare a special row,
which is called End-of-Lookup (EoL), to avoid conditional
branching for synchronizing the completion timing between
the SIMD ways. After a SIMD way finishes its lookup pro-
cedure, the SIMD way loops on the EoL until all SIMD ways
finish their LPM procedure. To achieve such a mechanism,
the EoL points itself by having all values zero in its elements.
In addition, the elements that have no descendent row in the
state-jump table automatically point to EoL because EoL is
assigned the 0th row of the state-jump table, and elements
have zero as the next-row index by default. In other words,
the EoL is a sentinel in the routing table of Spider.

In addition, we minimize the amount of searching on the
routing table by employing an optimization called direct
pointing [10]. Consequently, the routing table of Spider con-
sists of two parts: direct pointing table and state-jump table.
In direct pointing, an array corresponding to the part from
the beginning of the IP address is prepared in advance, and
the lookup for the length is covered with a single access to
the array. The optimization would reduce CPU cycles in the
lookup procedure of Spider by omitting the access to the
state-jump table. In Spider, the direct pointing table has 65536
elements, which corresponds with all possible values that a
16-bit length field takes so that the direct pointing table can
cover the lookup for the first two octets of the IP address.
For the length covered with the direct pointing table, 16-bit
is suitable for Spider. Most of the SIMD instructions can
address only byte-aligned values, and the size of the direct
pointing table becomes too large to fit in the last level cache
in the CPU with more than 16-bit length.

FIGURE 4. Design of Spider’s data structure: an example of a routing
table in which 10.64.128.192/26 via 172.16.0.1, 192.168.0.0/16 via
172.16.0.2, and 192.168.64.0/24 via 172.16.0.3 are installed, and
192.168.64.1 is processed.

Figure 4 illustrates an example of the routing table of
Spider employing direct pointing. In this example, three
routes (10.64.128.192/26 via 172.16.0.1, 192.168.0.0/16 via
172.16.0.2, and 192.168.64.0/24 via 172.16.0.3) are installed.
In the routing table, the lookup for 192.168.64.1 is processed
in two phases: lookup with the direct pointing table and that
with the state-jump table. First, the lookup with the direct
pointing table is processed. The lookup procedure loads the
element corresponding to the first and second octets of the
IP address from the direct pointing table. In this example,
because the element contains a next-hop index for 172.16.0.2,
the lookup procedure saves the next-hop index as a result.
In addition, because the element also contains a next-row
index for the row representing 192.168.0.0/16, the lookup
procedure will trace the row to search for the longer result.
Then, because the processed length on the destination IP
address exceeds two octets, which a direct pointing table
can cover, the lookup procedure enters the lookup with the
state-jump table. The lookup procedure loads the element
corresponding to the third octet of the IP address from the
row representing 192.168.0.0/16. At this time, because the
64th element contains a next-hop index for 172.16.0.3,
the lookup procedure overwrites the result with the next-hop
index. The next-hop index will be the longest matched result
because the following procedure will not find a new result
in this case. Finally, because the 64th element of the row
for 192.168.0.0/16 does not contain the next-row index, the
lookup procedure detects the completion of the lookup.

B. PARALLELIZATION WITH SIMD INSTRUCTIONS
Based on the routing table described in Section III-A, Spi-
der performs LPM at a higher lookup rate by looking up

VOLUME 8, 2020 167031



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

Algorithm 1 Lookup Procedure for IPv4
Input: DstArray
Output: ResArray
1: load256(dst,DstArray);
2: /* Direct pointing for first two octets of IPs */
3: idx = shuffle8(dst,maskd16);
4: idx = add32(idx, 256); // row[1] + idx
5: val = gather32(fib, idx);
6: nhi = shuffle8(val,masknhi);
7: res = nhi;
8: nri = shuffle8(val,masknri);
9: while not all next-row indexes are 0 do

10: /* Iterative lookup for subsequent octets of IPs */
11: idx = shuffle8(dst,maskd8);
12: idx = add32(idx, nri); // row[next-row index] + idx
13: val = gather32(fib, idx);
14: nhi = shuffle8(val,masknhi);
15: maskbl = cmpeq32(nhi, 0);
16: res = blend32(maskbl, res, nhi);
17: nri = shuffle8(val,masknri);
18: end while
19: store256(ResArray, res);
20: return;

multiple IP addresses in parallel with SIMD instructions. The
lookup procedure basically iterates two parts of processing:
data loading and manipulation. Both parts consist of only
SIMD instructions, which can process the data in parallel,
but cannot address bit-wise operations, pointer referencing,
and conditional branching without extra operations; these
characteristics are the reason we avoided these operations
when designing the routing table of Spider. For the data load-
ing, Spider loads multiple elements onto a SIMD register in
parallel from the routing table with the gather instruction.
The gather instruction can load multiple data located in
separated regions; a novelty of Spider is to focus on the
gather instruction enabling to compose the lookup proce-
dure only with SIMD instructions. For the data manipulation,
Spider calculates the locations of the elements to search
longermatching results withshuffle andadd instructions.
In the lookup phase, we assume that the SIMD instructions
can process eight 32-bit data in parallel, which correspond
with 8 IP addresses one by one, referencing Intel’s AVX2
mechanism [52].

Algorithm 1 describes the lookup procedure of Spider at
the instruction level. The subscripts of each instruction repre-
sent the length of data type that the SIMD instruction operates
on. The lookup procedure consists of two phases: looking up
the direct pointing table for the first two octets of the target
IP address and iterative processing for subsequent octets of
the target IP address. First, the procedure processes the first
phase for looking up a direct pointing table, which consists
of the following four parts. The first part is the extraction of
the first two octets from the IP addresses using a shuffle

instruction (line 3). The second part is the addition of the
extracted parts to 256, which is the offset for the EoL, to
calculate the indexes of the elements in the direct pointing
table using an add instruction (line 4). The third part is
the loading of the elements based on the indexes using the
gather instruction (line 5). The fourth part is the extraction
of the next-hop index and next-row index from the elements
using the shuffle instruction (lines 6 and 8). The lookup
procedure finishes when all next-row indexes indicate zero;
in this case, if all longest matched results of the IP addresses
are /16 or shorter, the lookup procedure finishes. Otherwise,
then the lookup procedure enters the second phase, which
processes subsequent octets by iteration for each octet. The
second phase is similar to the first phase but has two different
points. The first point is that the single octet is extracted using
the shuffle instruction per iteration (line 11). The second
point is that the next-row index extracted in the previous
phase or iteration is used to calculate the locations of the
elements in the state-jump table (line 12). When next-row
indexes of all IP addresses become zero, the lookup proce-
dure finishes, and the last obtained next-hop indexes are the
longest matched results for the target IP addresses.

Moreover, we maximize the lookup rate of Spider by intro-
ducing an optimization technique called loop fusion [53].
Loop fusion is a common optimization to increase the
throughput of an iterative procedure by combining two inde-
pendent iterations into a single loop to conceal the latency
of memory access. In the lookup procedure of Spider, the
SIMD instructions that cause memory referencing such as
load, store, and gather are frequently used. By processing
another iteration instead of just waiting for the completion
of memory referencing instructions, the throughput of the
lookup procedure increases. Because Spider combines two
iterations that consist of 8-way SIMD instructions, the result-
ing procedure processes 16 IP addresses in a single iteration.

C. ROUTING TABLE MANAGEMENT
Software LPM methods need to manage route information
in their routing tables while keeping a higher lookup rate in
the lookup phase. Spider also must have the basic feature
to manage route information such as addition and deletion.
However, the state-jump table, which Spider employs, is
unsuitable for these operations, because it cannot represent
route information other than best routes with contiguously
arranged elements that are minimized to store only two
indexes required to represent best routes. Without the route
information other than best routes, when an old best route
that overlaps the next highest priority route is deleted, the
new best route cannot be activated. On the other hand, to
achieve a higher lookup rate in the lookup phase, arranging
elements contiguously and minimizing their size are required
for improving LPM performance. Otherwise, the CPU cache
hit rate, especially for the traffic pattern with high locality of
destination IP addresses, would decrease, which is not neg-
ligible even though Spider does not prioritize to exploit the
access speed of the CPU cache. Consequently, the state-jump

167032 VOLUME 8, 2020



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

FIGURE 5. Spider maintains a multiway trie that route aggregation is applied to, and converts the multiway trie into the real routing table that consists of
a direct pointing table and state-jump table. In this example, the routes for 10.64.128.192/26 via 172.16.0.1, 192.168.0.0/16 via 172.16.0.2,
192.168.10.10/32 via 172.16.0.2, and 192.168.64.0-255/32 via 172.16.0.3 are installed.

table achieves efficient processing with SIMD instructions,
but it cannot achieve route addition and deletion without
performance degradation in the lookup phase.

To achieve both route management and higher lookup rate,
Spider maintains route information on a multiway trie for
only management and uses the state-jump table converted
from themultiway trie in the lookup procedure. Themultiway
trie is an extended variant of the trie data structure, where
each node holds 2k descendent nodes, while in the normal
trie, each node holds only two descendent nodes. Thus, the
multiway trie can provide basic route management features as
with the normal trie. In addition, the use of a 28 multiway trie
can simplify the conversion procedure to the state-jump table
because a node in the multiway trie can be converted to a row
for the state-jump table without transforming the structure of
the tree. Therefore, the characteristic provides faster build
of the state-jump table, which is an advantage to support
frequent route updates in real-world environments. On the
other hand, a disadvantage of the multiway trie is memory
space inefficiency compared with the normal trie. However,
the disadvantage is negligible in Spider because Spider uses
only a state-jump table converted from a multiway trie in its
lookup procedure.

In real packet processing, there are two ways to update a
routing table: batch-based and incremental updating. Spider
uses batch-based updating because batch-based updating can
practically coexist with the routing table structure of Spider.
By contrast, applying incremental updating to Spider requires
route management features such as route addition and dele-
tion on the state-jump table, whichwould lead to performance
degradation of the lookup procedure as described before. In
batch-based updating, the software holds route updates for
certain seconds, and after the holding period, reconstructs its
routing table entirely. The batch-based updating is employed
in certain career-grade hardware routers [54] because it can
handle frequent route updates without supporting the incre-
mental updating feature on the FIB table, which priori-
tizes performance. The design contributes to simplifying the
implementation and improving the consequent performance

of the FIB table. Similarly, in Spider, the batch-based updat-
ing can handle frequent route updates without performance
degradation in the lookup procedure due to the complication
of the state-jump table. Because Spider’s state-jump table
has a role similar to the FIB table, it is natural that the
batch-based updating in Spider brings out a similar advantage
with the hardware routers. In addition, batch-based updating
can achieve synchronization in a multithread environment by
simply replacing the old routing table with the new one by
Read Copy Update [55], while incremental updating requires
fine-grained exclusive control for synchronization between
the threads for each operation that changes the routing table.

In addition, we maximize the lookup rate by reducing
the size of the resulting routing table with an optimization
called route aggregation [56]. Route aggregation reduces the
number of routes in a routing table by combining a plurality
of routes that have the same next-hop into one route. The
reduction in the number of routes leads to a reduction of
the size of the routing table, which increases the lookup rate
because of its higher data locality. In Spider, the optimization
is applied to the nodes that do not affect the longest matching
result, such as the nodes that have the same next-hop for all
elements.

Figure 5 shows the process of conversion from the orig-
inal multiway trie to the real routing table, which consists
of two processes. First, the route aggregation is applied to
the multiway trie. The node for 192.168.10.0/24 is omitted
because its elements do not affect the lookup result; the
next-hop of the element, which is 172.16.0.2, is the same
with the next-hop for 192.168.0.0/16. In addition, the node
for 192.168.64.0/24 is omitted because all its elements have
the same next-hop, which is 172.16.0.3; all next-hop from
the elements are aggregated into the corresponding element
in the node for 192.168.0.0/16. Second, the multiway trie
is converted to a real routing table by the following three
processing parts. The first part is the arrangement of all /8 or
shorter routes information in the original multiway trie into
a single array of 65536 elements to build the direct pointing
table. The second part is the conversion of each node of the

VOLUME 8, 2020 167033



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

multiway trie that represents /16 or longer routes into a single
array that has 256 elements, which will be each row in the
resulting state-jump table. The third part is the arrangement of
the direct pointing table and all rows for the state-jump table
into a two-dimensional array. In this example, each region
on the aggregated multiway trie (a–d) corresponds to each
region with the same symbol in the consequent routing table.
The consequent routing table becomes the same as the routing
table described in Section III-A. For each element in a row,
Spider calculates two indexes. One is the next-row index,
which is a row number in the state-jump table converted
from each memory address pointer to the descendent nodes.
Another is the next-hop index, which is the index number
of the next-hop IP address in the next-hop table. Because
the number of rows and next-hops has to be known before
the conversion, Spider maintains the number along with the
original multiway trie.

IV. APPLICABILITY TO REAL PACKET PROCESSING
In this section, we discuss considerations when applying
Spider to real-world packet processing applications. Because
real-world packet processing applications require to support
IPv6, we consider applying Spider to IPv6 LPM. Spider
does not intend to fit the routing table size into the CPU
cache; therefore, this design choice enables adapting Spider
for IPv6, which requires more memory space for the routing
table than IPv4. In addition, we discuss the effect of Spider
on the latency in real packet processing. Spider processes up
to 16 destination IP addresses on a single lookup procedure.
This parallelism is required to maximize the performance;
however, it may cause a latency increase for forwarding the
packets.

A. IPv6 APPLICABILITY
Recent packet processing software has to support IPv6
because it performs an aspect of the Internet. In fact, the
growth rate of IPv6 has far exceeded IPv4, and the number of
IPv6 BGP routes has reached 9.7% of IPv4 as of 2019 [57],
with the background of IPv4 exhaustion. The large address
and the growing number of routes cause the increase of
routing table size, which leads to the difficulty in fitting it
into the CPU cache—especially the L1 data CPU cache. In
contrast, Spider improves the lookup rate of the LPM by
the parallelism instead of only exploiting the CPU cache.
Therefore, Spider can derive an improvement on the larger
routing table for IPv6.

The lookup procedure of Spider can easily adapt to IPv6
with some additional operations to handle the address length
of IPv6, which is four times as long as IPv4. Despite the
additions, Spider achieves up to 16 parallel LPM for IPv6 as
with IPv4. Algorithm 2 describes the IPv6 lookup procedure
of Spider at the instruction level. The procedure is basically
the same as with the lookup procedure for IPv4 except for
the parts to handle the longer address length. In the lookup
procedure for IPv6, we take the approach that prioritizes the
parallelism of the lookup procedure over the overhead for

Algorithm 2 Lookup Procedure for IPv6
Input: DstArray
Output: ResArray
1: load256(dst1,DstArray[0]);
2: load256(dst2,DstArray[2]);
3: load256(dst3,DstArray[4]);
4: load256(dst4,DstArray[6]);
5: /* Extract first four octets from IPv6 addresses */
6: unpack1 = unpacklo32(dst1, dst3);
7: unpack2 = unpacklo32(dst2, dst4);
8: dst = unpacklo32(unpack1, unpack2);
9: /* Direct pointing for first two octets of IPs */
10: idx = shuffle8(dst,maskd16);
11: idx = add32(idx, 256); // row[1] + idx
12: val = gather32(fib, idx);
13: nhi = shuffle8(val,masknhi);
14: res = nhi;
15: nri = shuffle8(val,masknri);
16: while not all next-row indexes are 0 do
17: /* Iterative lookup for subsequent octets of IPs */
18: idx = shuffle8(dst,maskd8);
19: idx = add32(idx, nri); // row[next-row index] + idx
20: val = gather32(fib, idx);
21: nhi = shuffle8(val,masknhi);
22: maskbl = cmpeq32(nhi, 0);
23: res = blend32(maskbl, res, nhi);
24: nri = shuffle8(val,masknri);
25: if 4 octets has been processed then
26: /* Left-shift by four octets and
27: extract the beginning four octets */
28: dst1 = srli256(dst1, 4);
29: dst2 = srli256(dst2, 4);
30: dst3 = srli256(dst3, 4);
31: dst4 = srli256(dst4, 4);
32: unpack1 = unpacklo32(dst1, dst3);
33: unpack2 = unpacklo32(dst2, dst4);
34: dst = unpacklo32(unpack1, unpack2);
35: end if
36: end while
37: /* Fix order of data scrambled by unpack */
38: res = permute32(res,maskres);
39: store256(ResArray, res);
40: return;

refilling each data on the SIMD register per four octets from
the original IPv6 addresses.

Compared with the lookup procedure for IPv4, the follow-
ing four processing parts are additionally required to support
IPv6 LPM. The first part is the four times loading of IPv6
addresses from the input array by the load instructions due
to the address length (lines 1-4). The second part is the extrac-
tion of the first four octets from the loaded IPv6 addresses by
unpacklo instructions (lines 6-8). The unpacklo instruc-
tion interleaves two registers, and it also can be applied to data

167034 VOLUME 8, 2020



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

extraction by repeating that operation. The reason why we
adopted unpacklo for this extraction is that the three times
execution of unpacklomarks the highest lookup rate in our
microbenchmark compared with other ways such as the com-
bination of bit-shift and bit-mask. The third part is the refill-
ing of the target data with the next four octets from the rest
of the IPv6 addresses by srli and unpacklo instructions
when the lookup procedure reaches the four octets boundary
of target IPv6 addresses (lines 25-34). The fourth part is the
correction of the order of the results, which has been changed
by unpacklo instructions, by the permute instruction to
return results in the original order (line 37). The permute
instruction can execute shuffling of the data overcoming the
128-bit boundary, while the shuffle instruction cannot.

B. INCREASED LATENCY BY PARALLELIZATION
To execute LPM in parallel, the method needs to wait for
the arrival of the corresponding number of packets, and
consequently, it might increase latency for forwarding the
packets. Despite the requirement, the increase of latency for
each packet would be insignificant in practical applications
because the applications already exploit the optimization
called packet batching [3], [20], [22], [47], which processes
multiple packets at once to increase the throughput. The
applications can easily introduce Spider without a significant
increase of the latency for each packet because batching in
the packet processing and parallelizing LPM are common in
the necessity to wait for the arrival of multiple packets.

V. EVALUATION
For the evaluation of Spider, we consider the following three
perspectives: the effect of the parallelism provided by the
SIMDmechanism, performance comparisonwith othermeth-
ods, and performance scalability. For the first perspective, we
measured the performance changes alongwith the parallelism
provided by the SIMD mechanism to show that the paral-
lelization contributes to the performance of Spider (§ V-B).
In addition, we measured the packet forwarding performance
according to different batch sizes to clarify the allowable
degree of parallelism in real-world applications (§ V-C). For
the second perspective, we compare the lookup rate and CPU
cycles per iteration of Spider with other methods to show that
Spider outperforms other methods in terms of the lookup rate
while showing longer latency for an iteration (§ V-D). For the
third perspective, we measured the changes of lookup rate
along with the CPU frequency (§ V-E) and the number of
CPU cores (§ V-F) to clarify the performance scalability of
Spider under various conditions.

For the methods except for Spider, we used the publicly
available implementations of DXR [17], [58], Poptrie [59],
and an implementation of DIR-24-8 [39] from DPDK [21]
with modifications to measure the performance. Both DXR
and Poptrie vary regarding the length of direct pointing,
whose length is represented as the name, such as Poptrie18
andD18R. The expressionmanners are alignedwith the origi-
nal papers of eachmethod [10], [11]. For Spider, we represent

the settings of parallelism as Spider16w. The equipment used
for experiments consisted of an Intel Xeon Gold 6130 CPU
(2.10 GHz, 3.70 GHz with turbo-boost, 22 MiB cache, 16
cores) and 48 GB DDR4-2666 memory. The sizes of the L1,
L2, and L3 CPU caches are 1 MiB, 16 MiB, and 22 MiB,
respectively.

A. DATASET AND TRAFFIC PATTERNS
We evaluate the performance of the LPM methods with the
current BGP route of the Internet, which is called the BGP full
route. BGP full route is suitable for this evaluation because
IP routing based on the BGP full route is the highest load
situation that current routers face in real-world environments.
As the current BGP routes of the Internet, we used two BGP
full routes of real ISPs: ISP-A and ISP-B. For IPv4, the
numbers of the routes were 773, 822, and 776, 684, and the
ratio of /24 prefix was 58% for both datasets. The datasets
were captured on December 10, 2019. For IPv6, the numbers
of the routes were 77, 674 and 78, 156, and the ratio of /32
prefix was 17% for both datasets. The datasets were captured
on March 4, 2020.

We consider the random and real-trace traffic patterns for
the evaluation in this paper. The random traffic pattern reveals
the worst-case performance of LPM methods, and the real-
trace traffic pattern reveals the performance against actual
traffic. For the random traffic pattern, we measured the time
of looking up 232 random destination IP addresses with a
just-in-time generation of the pattern aligned with Poptrie’s
paper. We used the linear congruential method to generate
a random traffic pattern. As a problem peculiar to IPv6, the
fully random traffic pattern would not show the worst-case
performance of LPM methods, because most IPv6 addresses
would not match any route due to its huge address space.

To evaluate the worst-case performance of IPv6 LPM
methods, we made a situation where most addresses match
some random routes by following three processes. First, a
pattern table that includes the first 32-bit of the prefixes
in the target routing table is generated in advance of the
measurement. Second, a 32-bit pattern is picked randomly
from the table. Third, a 128-bit IPv6 address is generated by
concatenating the 32-bit pattern picked from the table, 32-bit
random part, and 64-bit host part, which is fixed to ::1. For the
real-trace traffic pattern, we measured the time of looking up
the destination IP addresses from real Internet traffic captured
on April 10, 2019, on the sampling point F of the WIDE
backbone, which is published as the MAWI dataset [60].
For this pattern, the 228 IP addresses for IPv4, and the 226

IP addresses for IPv6 are arranged in a 1-Gbyte array in
advance of the execution, as the maximum number that can
be prepared without affecting the lookup performance.

B. EFFECT OF PARALLELIZATION IN SPIDER
Because maximizing the lookup rate by parallelizing LPM
is our main contribution, we evaluated how the increase
of parallelism by the SIMD instructions contributes to the

VOLUME 8, 2020 167035



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

TABLE 1. Memory footprint of routing tables.

performance. The measurement was conducted with the ran-
dom traffic pattern and the BGP full route of both ISPs.

FIGURE 6. Lookup rate scales with the parallelism by the SIMD
instructions in Spider.

According to the result shown in Figure 6, we confirmed
the lookup rate of LPM scales along with the parallelism
provided by the SIMD mechanism. The result indicates that
the parallelization with SIMD instructions contributes to the
improvement of LPM performance. When the degree of par-
allelism is 8-way or more for IPv4, and 7-way or more for
IPv6, the lookup rate by Spider outperforms other methods
that take approaches to minimize memory access latency.
For IPv4, when the degree of parallelism is 16-way, Spider
reaches 516 Mlps for ISP-A, which is 6.9 times faster than
the case when the parallelism is 1-way, 1.8 times faster than
Poptrie18. For IPv6, when the degree of parallelism is 16-way,
Spider reaches 188 Mlps of lookup rate for ISP-A, which
is 8.2 times faster than the case when the parallelism is 1-
way, 2.2 times faster than DIR-24-8. Note that the sublinear
scaling between 8-way and 9-way is due to the load of random
address generation by the just-in-time manner. More than 9-
way needs two times the generation process, and the process
for IPv6 is heavier than IPv4. Therefore, a performance stag-
nation between 8-way and 9-way is clearly observed in IPv6.

When the parallelism of Spider is no more than 6-way
for IPv4, the lookup rate of Spider falls below the others.
The reason Spider cannot outperform other methods in lower
parallelism is the drawbacks for using SIMD instructions,
which are the larger memory footprint and the reduction of
the CPU frequency. First, the larger memory footprint leads to
the reduction of the CPU cache hit rate, which leads to longer
access latency in the lookup procedure. For Spider, as shown
in Table 1, the memory footprint is larger than the 1 MiB of
the L1 data CPU cache and Poptrie18 and D18R, although it
would fit in the 22 MiB of the L3 CPU cache. Therefore, Spi-

der’s size of memory footprint leads to longer access latency
than Poptrie18 and D18R in the lookup procedure. Second,
the reduction of the CPU frequency, which is caused by the
power consumption increase for SIMD processing, leads to
the latency increase of each lookup. The frequency reduction
reaches 19% for the CPU used for this evaluation, according
to the specification [61]. In Spider, when the improvement of
the lookup rate by the parallelism of SIMD instructions does
not overcome these drawbacks, the performance becomes
lower than for other methods.

C. DEGREE OF PARALLELISM ON REAL PACKET
PROCESSING
To exploit the parallelism of Spider, which is confirmed to
contribute to the lookup performance in Section V-B, we need
to clarify the allowable degree of parallelism based on the fea-
sible batch size that the packet processing software can use.
As we described in Section IV-B, the degree of parallelism
that can be increased without additional latency depends on
the batch size in real packet processing. Therefore, the batch
size to saturate the capacity of the recent NIC would be the
allowable degree of parallelism at the same time. To measure
the batch size in real packet processing, we implemented
an IP-based packet forwarding application called lpmtest,
which is modulable for LPM methods, and measured its
performance for both Spider16w and Poptrie18. The reason
we measured the performance for Poptrie18 in addition to
Spider16w is to confirm the practical batch size without the
effect of parallelizing LPMbecause Poptrie18 processes a sin-
gle IP address per lookup in contrast to Spider16w. Thus, the
result of Spider16w is complementary in this measurement,
which shows that the characteristics of Spider16w would not
affect the appropriate batch size.

The design of lpmtest is the kernel-bypass architecture
to bring out the performance, which is typical for high-speed
packet processing software. In addition, the lpmtest does
not have features and optimizations as in production-grade
frameworks to eliminate the effects that do not relate to the
scope of this measurement. The lpmtest directly operates
on the Intel XL710 series NIC by a simple driver in user-
space and processes IP-based forwarding for the packets
by designated batch sizes. In multicore environments, the
lpmtest can have multiple threads to process packets in
parallel, using the RSS feature of the NIC. The threads are
organized in the run-to-completion model, where each thread
processes the entire forwarding process for assigned packets.
The model is a major one in software that focuses on latency
reduction. By contrast, the software focusing on maximizing
throughput employs the pipeline model, where each thread
is in charge of a single feature. The reason we adopted the
run-to-completion model is that the model directly reflects
the performance of LPM as its forwarding performance. On
the other hand, the forwarding performance of pipeline model
changes depending on the various factors, and thus the model
is not suitable for measuring the performance of a single fea-
ture such as LPM. Moreover, the routing table in lpmtest

167036 VOLUME 8, 2020



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

synchronizes with the kernel via NETLINK, so that we can
insert routes using Linux standard utilities such as iproute2.
Changes to the routing table are processed by batch-based
updating described in Section III-C, which also proves the
feasibility of the technique.

FIGURE 7. Setup for the IP forwarding test.

Figure 7 shows the setup of this measurement. In the
setup, there are two nodes, which are generator and for-
warder, and they are connected with the 40 Gbps Ethernet
by Intel XL710 NICs. The measurement scenario consists of
the following three processes. First, the generator sends the
packets that have random destination IP addresses using a
Netmap-based [18] packet generator using eight CPU cores
out of 16. Second, the forwarder processes the packets by
lpmtest under setup for each measurement. Third, the gen-
erator receives the packets using the eight CPU cores that are
not used to send the packets. We confirmed that the number
of packets from the generator overcomes the number that
the forwarder can process in advance of the measurements.
We adopted the 64-byte packet size because the size is the
highest load situation for packet processing software. To
clarify the performance bottleneck, we increased the number
of CPU cores up to two as the maximum number at which
the forwarding performance improved. The equipment of the
generator and forwarder has the same specification described
in Section V.

As a result, this measurement has revealed that the suitable
batch size for IP-based packet processing is 16 or more
when the capacity of the CPU is enough, and thus Spider’s
degree of parallelism of 16 is allowable for real-world packet
processing. Figure 8 shows the packet processing rates of
both Poptrie18 and Spider16w with two types of routing tables:
only with a default route and BGP full route. For Poptrie18,
when the number of CPU cores is two, the batch size at the
upper limit of the packet processing rate is 16, and when the
number of CPU cores is one, the batch size at the upper limit
is 32, although the amount of increase from the batch size of
16 is insignificant. The results for Spider16w are mostly the
same as the results of Poptrie18. Moreover, from the results of
Poptrie18 and Spider16w, the difference between default route
only and BGP full route patterns is insignificant; therefore
the results indicate that LPM is not the bottleneck in this
measurement. Therefore, we can observe that the efficient
batch size in real-world packet processing is 16 or more
when the LPM is not the bottleneck, and thus the 16-way
parallelism of Spider is suitable for recent packet processing
software. Besides, the reason packet processing rate saturates

FIGURE 8. Packet processing rates according to different batch sizes.

around 30 Mpps is that there is a hardware performance limit
over the packet I/O in the Intel XL710 series NIC, according
to the benchmark by Intel [62].

D. COMPARISON OF LOOKUP RATE WITH OTHER
METHODS
To show the performance advantage of Spider, we compare
the lookup rate of Spider16w with Poptrie18, Poptrie16, D18R,
D16R, and DIR-24-8 with random and real-trace traffic pat-
terns and the BGP full routes of two real ISPs. For random
lookup, we added 8-way and 1-way variants of Spider in
addition to the original 16-way version to show the effect
of parallelism provided by the SIMD mechanism, while we
measured only the 16-way version of Spider for the real-trace
lookup due to the experimental restriction of real-trace data.

Figure 9 shows a comparison of the lookup rate of the ran-
dom and real-trace traffic patterns for IPv4 and IPv6. Through
all experiments, Spider16w outperforms other methods for the
BGP full routes of both ISP-A and ISP-B. The results show
that parallelizing the lookup procedure with SIMD instruc-
tions can achieve higher lookup rates than other methods
despite the larger memory footprint and the reduction of the
CPU frequency. For IPv4, compared with Poptrie18, which is
the second-highest rate, Spider16w is 1.8 times faster in ran-
dom lookup with the BGP full route of ISP-A and 2.0 times
faster with ISP-B. In terms of real-trace lookup, Spider16w
is 2.3 times faster than D18R, which is the second-highest
rate, with the BGP full route of ISP-A and 2.6 times faster
with ISP-B. For IPv6, compared with DIR-24-8, which is the
second-highest rate, Spider16w is 2.2 times faster in random
lookup with the BGP full route of ISP-A and ISP-B. In terms
of real-trace lookup, the lookup rate of each method is sig-
nificantly higher than that of the random traffic pattern. The

VOLUME 8, 2020 167037



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

FIGURE 9. Comparison of the lookup rate of the random and real-trace
traffic patterns for IPv4 and IPv6.

TABLE 2. The CPU cycles per iteration: Poptrie and DXR process one IP
address per iteration, while Spider processes 16 IP addresses per
iteration.

reason is the load to generate the random traffic pattern for
IPv6 is higher than IPv4, although the just-in-time generation
is required to measure the worst-case performance with the
huge address space of IPv6. Moreover, the lookup rate of
Spider in the real-trace traffic pattern is far higher than other
methods for both IPv4 and IPv6. This is because Spider can
utilize the L1 data CPU cache when the traffic pattern has
high locality of destination IP addresses, in addition to the
parallelism provided by the SIMD mechanism. As a result,
Spider16w is 3.2 times faster than DIR-24-8, which is the
second-highest rate, with the BGP full routes of ISP-A and
ISP-B.

In addition, wemeasured CPU cycles to process the lookup
procedure for each method to reveal the latency characteris-
tics. Figure 10 shows the CDF of the CPU cycles per iteration
for each method, and Table 2 summarizes the mean, 50th
(median), 75th, 95th, and 99th percentiles of the CDF. For
the measurement manner, we measured the CPU cycles to
process a single iteration, not a single IP lookup, because
previous methods and Spider16w are different in the number
of IP addresses processed in a single iteration. Thus, the CPU
cycle equals 1 IP lookup for Poptrie18 and D18R, while it
equivalents 16 IP lookups for Spider16w. As the overall trend
of the result, Spider16w requires four times or more CPU

FIGURE 10. CDF of the CPU cycles per iteration.

cycles than othermethods; this arises from the longermemory
access time to process 16 IP addresses such as gathering data
in the lookup procedure. In addition, the result in Section V-C
indicates that the latency would not affect the performance
of real-world applications because of the packet batching.
For Poptrie18 and D18R, the trend of the result is almost the
same, although D18R slightly outperforms Poptrie18. We can
observe the small degradation of the CPU cycles in Poptrie18
and D18R when CDF is around 0.4, which is caused by the
miss-hit in the L1 data CPU cache. However, the performance
degradation until CDF reaches 0.9 or more is small; it indi-
cates they fit most of their routing table into the L1 data CPU
cache.

E. LOOKUP PERFORMANCE ACCORDING TO CPU
FREQUENCY
To confirm that the performance advantage of Spider remains
at all CPU frequencies, we measured the performance of
LPMmethods under different CPU frequencies. Through this
measurement, we can observe two aspects of the performance
of each LPMmethod: the performance at lower CPU frequen-
cies indicates the possible advantage of the devices that have
limited computing resources such as Internet-of-Things (IoT)
nodes and Customer–Premises–Equipment (CPE), and the
performance under higher CPU frequencies indicates the pos-
sible performance scalability with future CPU advances. The
measurements were conducted for the random traffic pattern
using acpi-cpufreq as the CPU frequency driver, which
also disables the turbo-boost feature in Intel’s CPU. Both
the lowest CPU frequency of 1.0 GHz and the highest CPU
frequency of 2.1 GHz are the hardware limits. Although the
CPU used in this experiment reduces its frequency dynami-
cally when using SIMD instructions, the reduction range is
insignificant when using a single CPU core; thus, we plot the
performance of Spider at the configured CPU frequency on
figures in this section and Figure 1 in Section I.

Figure 11 shows the performance of LPM methods at
different CPU frequencies for IPv4 and IPv6. Through both
results, we can observe that Spider16w has an advantage
not only at higher CPU frequencies but also at lower CPU
frequencies, because the parallelism, which is a factor of

167038 VOLUME 8, 2020



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

FIGURE 11. Performance of LPM methods under different CPU
frequencies for IPv4 and IPv6.

Spider’s performance advantage, is not affected by the CPU
frequency. In addition, Spider16w, Poptrie18, and D18R are
in proportion to the CPU frequency; the result indicates that
the processing of the CPU instructions is dominant to their
performance. For IPv4, when the CPU frequency is 1.0 GHz,
Spider16w reaches 158 Mlps, which is 1.8 times faster than
DIR-24-8. DIR-24-8 is the second-fastest method at that
frequency. In addition, when the CPU frequency is 2.1 GHz,
Spider16w reaches 318 Mlps, which is 2.7 times faster than
DIR-24-8. Note that the performance of DIR-24-8 falls below
the others when the CPU frequency is higher than 1.5 GHz,
although it outperforms Poptrie18 and D18R at lower CPU
frequencies; the result indicates that the processing of the
CPU instructions is not dominant to the performance of DIR-
24-8 when CPU frequency is high. For IPv6, when the CPU
frequency is 1.0 GHz, Spider16w reaches 58 Mlps, which is
2.3 times faster than DIR-24-8. When the CPU frequency
is 2.1 GHz, Spider16w reaches 117 Mlps, which is 2.3 times
faster than DIR-24-8. The trend shown in the result is mostly
the same as for IPv4, except that DIR-24-8 is also in pro-
portion to the CPU frequency, and shows its performance
advantage over Poptrie18, even at higher CPU frequencies.

F. SCALABILITY IN A MULTICORE ENVIRONMENT
To confirm that the lookup rate of Spider scales alongwith the
number of CPU cores as with the CPU frequency, we evalu-
ated how the lookup rate changes depending on the number
of cores. The scalability according to the number of CPU
cores is worth evaluation because recent packet forwarding
mechanisms are generally designed and implemented to scale
upwith the number of CPU cores [3], [22]. In this experiment,
all CPU cores share a routing table as with the real-world
packet processing software. Theoretically, the lookup rate
would scale up to the bandwidth to the locations of the routing
table. The location of the routing table varies from the CPU
cache to the main memory depending on its memory foot-
print; however, in any case, the bandwidths of the locations
are sufficient to accommodate all cores in current CPUs.
FromTable 1, the Poptrie18 and D18R fit their routing table in
the size of the L1 data CPU cache. Spider16w’s routing table
is larger than that of Poptrie18 and D18R, although it fits its
routing table in the L3 CPU cache at least. DIR-24-8 has a

relatively large routing table compared with other methods,
which would cause frequent reference to the main memory.
Consequently, all methods would scale up with the number
of CPU cores in current CPUs, although the rate would vary
depending on the design of each method.

FIGURE 12. Lookup rates of Poptrie18, D18R, DIR-24-8, and Spider with
multiple CPU cores up to 16 CPU cores.

Figure 12 shows the lookup rates of Poptrie18, D18R,
DIR-24-8, and Spider16w with multiple CPU cores up to
16. Through the overall result, we can observe that all
methods scale with the number of CPU cores. In this
measurement, we disabled Intel’s turbo-boost because it
causes a biased acceleration of the CPU frequency, which
leads to a fluctuation of the result. For IPv4, with a sin-
gle CPU core, Spider16w achieves 318 Mlps, which over-
comes the wire-rate of 200 Gbps. With 16 CPU cores,
Spider16w, Poptrie18, D18R, and DIR-24-8 reach 5,074Mlps,
2,532 Mlps, 2,325 Mlps, and 1,680 Mlps, respectively. The
lookup rate of Spider16w with 16 CPU cores is equivalent
to 34 ports of 100 Gbps interface, while that of Poptrie18
is equivalent to 17 ports. For IPv6, with a single CPU core,
Spider16w achieves 117Mlps, which almost equals the capac-
ity of 80 Gbps. With 16 CPU cores, Spider16w, Poptrie18,
and DIR-24-8 reach 1,857 Mlps, 496 Mlps, and 823 Mlps,
respectively. The lookup rate of Spider16w with 16 CPU cores
for IPv6 is equivalent to 12 ports of 100 Gbps interface.

VI. CONCLUSION
In this paper, we have proposed Spider, which achieves an
improvement of the LPM performance by parallelizing its
lookup procedure in a single CPU core. We have achieved
a fully parallelized LPM procedure by designing a data struc-
ture of a routing table optimized for SIMD instructions. The
advantage of using SIMD instructions is that it does not
require any additional hardware because the instructions are
commonly included in recent CPUs. The key to achieving
the fully parallelized procedure of LPM is to utilize the
gather instruction, which enables a single CPU core to
execute LPM in parallel. As a result, Spider demonstrated a
dramatic improvement in LPM performance compared with
the state-of-the-art software LPM methods. The evaluation
shows that Spider16w improves the lookup rate by 1.8–3.2
times compared with the state-of-the-art methods. In addi-
tion, Spider16w achieves 5,074 Mlps with 16 CPU cores,

VOLUME 8, 2020 167039



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

which is equivalent to 34 ports of 100 Gbps interface. This
work opens up the possibility of applying software network
applications for packet processing at the terabit-class rate.

ACKNOWLEDGMENT
The authors would like to thank Assoc. Prof. K. Fukuda with
the National Institute of Informatics, Japan, for his valuable
advice.

REFERENCES
[1] R. Guerzoni, ‘‘Network functions virtualisation: An introduction, benefits,

enablers, challenges and call for action, introductory white paper,’’ in Proc.
SDN OpenFlow World Congr., vol. 1, 2012, pp. 5–7.

[2] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee, ‘‘Network function virtu-
alization: Challenges and opportunities for innovations,’’ IEEE Commun.
Mag., vol. 53, no. 2, pp. 90–97, Feb. 2015.

[3] Y. Ohara, Y. Yamagishi, S. Sakai, A. D. Banik, and S. Miyakawa, ‘‘Reveal-
ing the necessary conditions to achieve 80Gbps high-speed PC router,’’ in
Proc. Asian Internet Eng. Conf. (AINTEC), 2015, pp. 25–31.

[4] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri, and
R. Wattenhofer, ‘‘Achieving high utilization with software-driven WAN,’’
in Proc. ACM SIGCOMM Conf., 2013, pp. 15–26.

[5] S. Sahni and H. Lu, ‘‘Dynamic tree bitmap for IP lookup and update,’’ in
Proc. 6th Int. Conf. Netw. (ICN), Apr. 2007, p. 79.

[6] H. Song, M. Kodialam, F. Hao, and T. V. Lakshman, ‘‘Scalable IP lookups
using shape graphs,’’ in Proc. 17th IEEE Int. Conf. Netw. Protocols,
Oct. 2009, pp. 73–82.

[7] H. Le and V. K. Prasanna, ‘‘Scalable tree-based architectures for IPv4/v6
lookup using prefix partitioning,’’ IEEE Trans. Comput., vol. 61, no. 7,
pp. 1026–1039, Jul. 2012.

[8] K. Huang, G. Xie, Y. Li, and A. X. Liu, ‘‘Offset addressing approach
to memory-efficient IP address lookup,’’ in Proc. IEEE INFOCOM,
Apr. 2011, pp. 306–310.

[9] G. Rétvçri, J. Tapolcai, A. Kőrösi, A. Majdán, and Z. Heszberger, ‘‘Com-
pressing IP forwarding tables: Towards entropy bounds and beyond,’’ ACM
SIGCOMM Computer Commun. Rev., vol. 43, no. 4, pp. 111–122, 2013.

[10] H. Asai and Y. Ohara, ‘‘Poptrie: A compressed trie with population count
for fast and scalable software ip routing table lookup,’’ SIGCOMM Com-
put. Commun. Rev., vol. 45, no. 4, pp. 57–70, Aug. 2015.

[11] M. Zec, L. Rizzo, andM.Mikuc, ‘‘DXR: Towards a billion routing lookups
per second in software,’’ACMSIGCOMMComput. Commun. Rev., vol. 42,
no. 5, pp. 29–36, Sep. 2012.

[12] T. Yang, G. Xie, Y. Li, Q. Fu, A. X. Liu, Q. Li, and L.Mathy, ‘‘Guarantee IP
lookup performance with FIB explosion,’’ inProc. ACMConf. SIGCOMM,
2014, pp. 39–50.

[13] J. L. Hennessy and D. A. Patterson. (Feb. 2019). A New Golden Age
for Computer Architecture. [Online]. Available: https://cacm.acm.
org/magazines/2019/2/234352-a-new-golden-age-for-computer-
architecture/fulltext

[14] Y. Ueno, R. Nakamura, Y. Kuga, and H. Esaki, ‘‘Spider: Parallelizing
longest prefixmatching with optimization for SIMD instructions,’’ inProc.
6th IEEE Conf. Netw. Softwarization (NetSoft), Jun. 2020, pp. 267–271.

[15] F. L. Faucheur, L. Wu, B. Davie, S. Davari,
P. Vaananen, R. Krishnan, P. Cheval, and J. Heinanen, Multi-Protocol
Label Switching (MPLS) Support of Differentiated Services, document
RFC3270, 2002.

[16] J. W. Evans and C. Filsfils, Deploying IP and MPLS QoS for Multiservice
Networks: Theory and Practice. Amsterdam, The Netherlands: Elsevier,
2010.

[17] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, ‘‘The click
modular router,’’ ACM Trans. Comput. Syst., vol. 18, no. 3, pp. 263–297,
Aug. 2000.

[18] L. Rizzo, ‘‘Netmap: A novel framework for fast packet I/O,’’ in Proc.
USENIX Annu. Tech. Conf., 2012, pp. 101–112.

[19] L. Rizzo and G. Lettieri, ‘‘VALE, a switched Ethernet for virtual
machines,’’ in Proc. 8th Int. Conf. Emerg. Netw. Exp. Technol. (CoNEXT),
2012, pp. 61–72.

[20] M. Honda, F. Huici, G. Lettieri, and L. Rizzo, ‘‘mSwitch: A highly-
scalable, modular software switch,’’ in Proc. ACM SIGCOMM Symp.
Softw. Defined Netw. Res. (SOSR), 2015, pp. 1–13.

[21] DPDK Project. (2020). DPDK: Home. [Online]. Available:
https://www.dpdk.org

[22] T. Barbette, C. Soldani, and L. Mathy, ‘‘Fast userspace packet process-
ing,’’ in Proc. ACM/IEEE Symp. Archit. Netw. Commun. Syst. (ANCS),
May 2015, pp. 5–16.

[23] J. Gil Herrera and J. F. Botero, ‘‘Resource allocation in NFV: A com-
prehensive survey,’’ IEEE Trans. Netw. Service Manage., vol. 13, no. 3,
pp. 518–532, Sep. 2016.

[24] V.-G. Nguyen, A. Brunstrom, K.-J. Grinnemo, and J. Taheri, ‘‘SDN/NFV-
based mobile packet core network architectures: A survey,’’ IEEE Com-
mun. Surveys Tuts., vol. 19, no. 3, pp. 1567–1602, 3rd Quart., 2017.

[25] A. J. McAuley and P. Francis, ‘‘Fast routing table lookup using
CAMs,’’ in Proc. IEEE INFOCOM Conf. Comput. Commun., Mar. 1993,
pp. 1382–1391.

[26] F. Zane, G. Narlikar, and A. Basu, ‘‘Coolcams: Power-efficient TCAMs
for forwarding engines,’’ in Proc. IEEE 22nd Annu. Joint Conf. Comput.
Commun. Societies (INFOCOM), vol. 1, Mar. 2003, pp. 42–52.

[27] K. Zhen, C. Hu, H. Lu, and B. Liu, ‘‘A TCAM-based distributed parallel
IP lookup scheme and performance analysis,’’ IEEE/ACM Trans. Netw.,
vol. 14, no. 4, pp. 863–875, Aug. 2006.

[28] W. Jiang, Q. Wang, and V. K. Prasanna, ‘‘Beyond TCAMs: An SRAM-
based parallel multi-pipeline architecture for terabit IP lookup,’’ in
Proc. IEEE INFOCOM 27th Conf. Comput. Commun., Apr. 2008,
pp. 1786–1794.

[29] R. Sangireddy, N. Futamura, S. Aluru, and A. K. Somani, ‘‘Scalable,
memory efficient, high-speed IP lookup algorithms,’’ IEEE/ACM Trans.
Netw., vol. 13, no. 4, pp. 802–812, Aug. 2005.

[30] M. Bando and H. J. Chao, ‘‘FlashTrie: hash-based prefix-compressed
trie for IP route lookup beyond 100Gbps,’’ in Proc. IEEE INFOCOM,
Mar. 2010, pp. 1–9.

[31] H. Lim, W. Kim, B. Lee, and C. Yim, ‘‘High-speed IP address lookup
using balanced multi-way trees,’’ Comput. Commun., vol. 29, no. 11,
pp. 1927–1935, Jul. 2006.

[32] H. Fadishei, M. S. Zamani, and M. Sabaei, ‘‘A novel reconfigurable
hardware architecture for IP address lookup,’’ in Proc. Symp. Archit. Netw.
Commun. Syst. (ANCS), 2005, pp. 81–90.

[33] M. A. Ruiz-Sanchez, E. W. Biersack, and W. Dabbous, ‘‘Survey and
taxonomy of IP address lookup algorithms,’’ IEEE Netw., vol. 15, no. 2,
pp. 8–23, Mar. 2001.

[34] M. Degermark, A. Brodnik, S. Carlsson, and S. Pink, ‘‘Small forwarding
tables for fast routing lookups,’’ ACM SIGCOMMComput. Commun. Rev.,
vol. 27, no. 4, pp. 3–14, Oct. 1997.

[35] V. Srinivasan and G. Varghese, ‘‘Fast address lookups using controlled
prefix expansion,’’ ACM Trans. Comput. Syst., vol. 17, no. 1, pp. 1–40,
Feb. 1999.

[36] P. Crescenzi, L. Dardini, and R. Grossi, ‘‘IP address lookup made fast and
simple,’’ in Proc. Eur. Symp. Algorithms, in Lecture Notes in Computer
Science, vol. 1643, 1999, pp. 65–76.

[37] S. Nilsson and G. Karlsson, ‘‘IP-address lookup using LC-tries,’’ IEEE J.
Sel. Areas Commun., vol. 17, no. 6, pp. 1083–1092, Jun. 1999.

[38] W. Eatherton, G. Varghese, and Z. Dittia, ‘‘Tree bitmap: Hard-
ware/software IP lookups with incremental updates,’’ ACM SIGCOMM
Comput. Commun. Rev., vol. 34, no. 2, pp. 97–122, Apr. 2004.

[39] P. Gupta, S. Lin, and N. McKeown, ‘‘Routing lookups in hardware at
memory access speeds,’’ in Proc. IEEE INFOCOM Conf. Comput. Com-
mun. 17th Annu. Joint Conf. IEEE Comput. Commun. Soc. Gateway 21st
Century, vol. 3, Mar. 1998, pp. 1240–1247.

[40] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, ‘‘Longest prefix
matching using Bloom filters,’’ IEEE/ACM Trans. Netw., vol. 14, no. 2,
pp. 397–409, Apr. 2006.

[41] H. Song, F. Hao, M. Kodialam, and T. V. Lakshman, ‘‘IPv6 lookups
using distributed and load balanced Bloom filters for 100Gbps core router
line cards,’’ in Proc. IEEE INFOCOM 28th Conf. Comput. Commun.,
Apr. 2009, pp. 2518–2526.

[42] H. Lim, K. Lim, N. Lee, and K.-H. Park, ‘‘On adding Bloom filters to
longest prefix matching algorithms,’’ IEEE Trans. Comput., vol. 63, no. 2,
pp. 411–423, Feb. 2014.

[43] P. Kennedy. (Jul. 2017). Intel Xeon Scalable Processor Family Microar-
chitecture Overview. [Online]. Available: https://www.servethehome.
com/intel-xeon-scalable-processor-family-microarchitecture-overview/

[44] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo,
and A. W. Moore, ‘‘Understanding PCIe performance for end host net-
working,’’ in Proc. Conf. ACM Special Interest Group Data Commun.,
Aug. 2018, pp. 327–341.

167040 VOLUME 8, 2020



Y. Ueno et al.: Fast LPM by Exploiting SIMD Instructions

[45] Y. Li, D. Zhang, A. X. Liu, and J. Zheng, ‘‘GAMT: A fast and scalable
IP lookup engine for GPU-based software routers,’’ in Proc. Archit. Netw.
Commun. Syst., Oct. 2013, pp. 1–12.

[46] T. Yang, G. Xie, A. X. Liu, Q. Fu, Y. Li, X. Li, and L. Mathy, ‘‘Constant
IP lookup with FIB explosion,’’ IEEE/ACM Trans. Netw., vol. 26, no. 4,
pp. 1821–1836, Aug. 2018.

[47] S. Han, K. Jang, K. Park, and S.Moon, ‘‘PacketShader: AGPU-accelerated
software router,’’ SIGCOMM Comput. Commun. Rev., vol. 40, no. 4,
pp. 195–206, 2011.

[48] J. Zhao, X. Zhang, X. Wang, Y. Deng, and X. Fu, ‘‘Exploiting graphics
processors for high-performance IP lookup in software routers,’’ in Proc.
IEEE INFOCOM, Apr. 2011, pp. 301–305.

[49] S. Zhou and V. K. Prasanna, ‘‘Scalable GPU-accelerated IPv6 lookup
using hierarchical perfect hashing,’’ in Proc. IEEE Global Commun. Conf.
(GLOBECOM), Dec. 2015, pp. 1–6.

[50] A. Ozsoy, ‘‘An efficient parallelization of longest prefix match and appli-
cation on data compression,’’ Int. J. High Perform. Comput. Appl., vol. 30,
no. 3, pp. 276–289, Aug. 2016.

[51] Y. Go, M. A. Jamshed, Y. Moon, C. Hwang, and K. Park, ‘‘APUNet:
Revitalizing GPU as packet processing accelerator,’’ in Proc. USENIX
Symp. Netw. Syst. Design Implement. (NSDI), 2017, pp. 83–96.

[52] Intel Corporation. (2020). Intel Architecture Instruction Set
Extensions and Future Features Programming Reference. [Online].
Available: https://software.intel.com/content/dam/develop/public/
us/en/documents/architecture-instruction-set-extensions-programming-
reference.pdf

[53] S.Muchnick, Advanced Compiler Design and Implementation. SanMateo,
CA, USA: Morgan Kaufmann, 1997.

[54] Cisco Systems. (2009). BGP Commands on Cisco IOS XR
Software. [Online]. Available: https://www.cisco.com/c/en/us/td/docs/
routers/crs/software/crs_r3-9/roting/command/reference/rr39crs1book
_chapter1.html

[55] P. E. McKenney and J. Walpole. (2007). What is RCU, fundamentally?
[Online]. Available: https://lwn.net/Articles/262464/

[56] R. P. Draves, C. King, S. Venkatachary, and B. D. Zill, ‘‘Constructing
optimal IP routing tables,’’ in Proc. IEEE INFOCOM Conf. Comput.
Commun. 18th Annu. Joint Conf. IEEEComput. Commun. Societies Future
Now, Mar. 1999, pp. 88–97.

[57] APNIC. (2020). BGP in 2019. [Online]. Available: https://blog.apnic.
net/2020/01/14/bgp-in-2019-the-bgp-table/

[58] M. Zec. (2019).DXR: Direct/Range Routing Lookups. [Online]. Available:
http://www.nxlab.fer.hr/dxr/

[59] H. Asai. (2019). Pixos/Poptrie: An Implementation of Poptrie
IP Routing Table Lookup Algorithm. [Online]. Available:
https://github.com/pixos/poptrie

[60] WIDE Project. (2019). Packet Traces From WIDE Backbone. [Online].
Available: http://mawi.wide.ad.jp/mawi

[61] Intel Corporation. (2020). Intel Xeon Processor Scalable Family
Specification Update. [Online]. Available: https://www.intel.
com/content/dam/www/public/us/en/documents/specification-
updates/xeon-scalable-spec-update.pdf

[62] Intel DPDK Validation Team. (2018). DPDK Intel NIC Performance
Report Release 18.02. [Online]. Available: https://fast.dpdk.
org/doc/perf/DPDK_18_02_Intel_NIC_performance_report.pdf

YUKITO UENO received the master’s degree
in media and governance from Keio University,
Tokyo, Japan, in 2016. He is currently pursuing the
Ph.D. degree with the Graduate School of Infor-
mation Science and Technology, The University of
Tokyo.

He is also an Engineer with the Department
of Innovation Center, NTT Communications Cor-
poration. His research interests include network
architecture and software packet processing.

RYO NAKAMURA received the Ph.D. degree in
information science and technology fromTheUni-
versity of Tokyo, Tokyo, Japan, in 2017.

He is currently a Research Associate with the
Information Technology Center, The University of
Tokyo. His research interests include networking
aspect in operating systems, network virtualiza-
tion, and network operation.

YOHEI KUGA received the Ph.D. degree in media
and governance from Keio University, Tokyo,
Japan, in 2015.

He is currently a Project Lecturer with the
Information Technology Center, The University
of Tokyo. His current research interests include
systems aspects of networking hardware and high-
performance computing and networking.

HIROSHI ESAKI (Member, IEEE) received the
Ph.D. degree in electronic engineering from The
University of Tokyo, Tokyo, Japan, in 1998.

In 1987, he joined the Research and Develop-
ment Center, Toshiba Corporation. From 1990 to
1991, he was with the Applied Research Labo-
ratory, Bellcore Inc., as a Residential Researcher.
From 1994 to 1996, he was with the Center for
Telecommunication Research, Columbia Univer-
sity, New York, NY, USA. In 1998, he was a

Professor with The University of Tokyo.
Dr. Esaki is an Executive Director of the IPv6 Promotion Council and the

Vice President of JPNIC. He is also an IPv6 Forum Fellow and a Board
Member of the WIDE Project and the Board of Trustees of the Internet
Society.

VOLUME 8, 2020 167041


