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ABSTRACT
System logs are important data to detect system faults and
diagnose root causes of them in a large scale network system.
However, due to a huge amount and wide diversity of logs, it
is not easy and time consuming for network operators. This
paper focuses on burstiness and causality of log time series
data to extract meaningful information for troubleshooting.
With Kleinberg’s burst detection algorithm, we conduct three
types of burstiness analysis depending on the combination
of the log time series generated by 15 months syslog data
obtained in an academic network in Japan: single, pair, and
device-based burst detections. The contribution of this paper
is as follows. In the single burst detection, we confirm our pre-
processing can remove over 90% of trivial bursts. Next, in the
pair burst analysis, we investigate causality of co-occurred
bursts with causal inference results [9] and find that 99%
of pair bursts are coincident; remaining 1% are causal pair
bursts. Furthermore, our similarity analysis distinguishes
two types of pair bursts depending on complexity of network
event causality. In the device-based burst detection, we find
3,735 bursts that are only found by this multivariate analysis.
In addition, we find some causal bursts missed in previous
causal inference results. To combine these findings, we can
extract meaningful log bursts from all the detected ones.
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1 INTRODUCTION
Network reliability is a crucial concern in the Internet. For
example, for ISP network operation, high availability and
fault tolerance have been a critical requirement while its
network system is gettingmore complicated and large-scaled.
Therefore, network operators are required to troubleshoot
network problems as fast as possible. Analyzing network
logs is one of the most useful methods to understand natures
of networks. In operational networks, syslog is widely used
for collecting network logs and it allows us to gather logs
from all devices at one server. With these logs, the operators
investigate detailed status and events for each devices in the
network system.

However, there are two issues to analyze system logs. First,
a huge amount and kind of log messages from a large-scale
network make the log analysis to be a hard task. Second, the
important logs related to system faults are usually hidden in
the majority of ones that report daily routine processes. Be-
cause of these two issues, manual inspection is an unrealistic
method and automatic methods are highly required.
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Figure 1: Analysis overview

In this paper, we overcome these problems in analyz-
ing system logs to extract meaningful information for trou-
bleshooting. We focus on log burstiness, which is one of the
most popular time series characteristics, and its causality. In
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other words, a question raised in the paper is how observed
bursts in log messages are useful for network operation. To
detect burstiness, we rely on Kleinberg’s burst detection al-
gorithm [8] and conduct three types of analysis depending
on combination of the log time series: single, pair, and device-
based burst detections (see also Fig. 1). We first apply the
burst detection to the single log time series per event per day.
After that, we investigate co-occurrence of bursts in a pair
of such time series.We calculate burst co-occurrence ratio
of pairs of bursts and compare with the causal inference
results [9]. In device-based burst detection, we aggregate
logs for each devices and apply burst detection. we focus on
the bursts which can be detected only in this device level
aggregation, but not in single event-based burst detection.

The contribution of this paper is as follows. First, our pre-
processing removes over 90% of trivial bursts, in order to
efficiently apply the Kleinberg’s burst detection method to
complicated and large scale network logs, Next, with three
types of analysis and comparison with causal inference re-
sults, we extract meaningful burst data for troubleshooting
from all the detected ones. Third, in device-based burst de-
tection, we find some causal bursts which are not found in
existing causal inference results. To combine with these re-
sults, we extract meaningful log bursts from a lot of trivial
ones for troubleshooting and also extract causal relationships
between log bursts.

2 RELATEDWORKS
2.1 System log analysis
Many prior literature tackle on automated system log anal-
yses. The automated system log analysis helps us detect
system failures, identify the root cause of them, and predict
the failures from tons of log messages. He et al. [5] discuss
common functionality of the automated system log analy-
sis by comparing prior literature: (1) log collection, (2) log
parsing, (3) feature extraction, and (4) anomaly detection,
root cause identification, or failure prediction. We conduct
our analysis along with this classification. We need (1)-(3)
processes to perform numerical or statistic methods to log
messages because system logs are string data. In process (4),
many analysis algorithms have been proposed.
To detect system anomaly with system logs, there are a

lot of existing methods [14, 19]. In recent work, Baseman
et al. [1] employ a graph analysis with a relational learning
and kernel density estimation, and generate clusters of re-
lated syslog messages. They successfully extract anomalous
behavior from super computer syslog data with low false
positives. To diagnose root causes of system failure [4, 12]
and predict system failure [15, 20] are also studied well. Lu
et al. [11] propose a root cause analysis method with log
messages and resource logs (e.g. CPU and memory logs).

ID logs devices templates filtering bursts
Data 1 34.7M 130 1789 no 400,518
Data 2 2.3M 130 1789 yes 32,704

Table 1: SINET4 Dataset and analysis result

They focus on the task execution time and define features.
To predict system failure, Kimura et al. [7] propose a network
fault prediction system based on system logs. They analyze
log features related to system faults in advance. With trouble
ticket data, they incrementally analyze the log features and
compare with the system fault log features.
Overviewing these existing methods, we find there is an

issue to be carefully considered; log anomaly do not directly
indicate system anomaly. Many existing methods try to solve
this issue with combining domain knowledge or sophisti-
cated feature extraction. The goal of our work is to extract
meaningful information for troubleshooting from system
logs and our strategy is contextual log analysis with causal
inference. The causal relationship of log anomaly relates to
the real system anomaly although the simple co-occurrence
of log anomaly includes a large number of false positives.
Our method provides causality between groups of logs re-
lated to burstiness and the results are useful information for
troubleshooting.

2.2 Causal inference from system logs
Causal inference is a statistical technique to identify a causal
relationship between events. A well-known causal inference
algorithm is PC algorithm [6, 16] that is based on conditional
independence. The conditional independence distinguishes
causal two events from co-occurred two events. Chen et
al. [3] apply the PC algorithm to a set of time series (e.g.,
RTT, TCP window size) for identifying the source of network
traffic delay.
The PC algorithm, however, has an issue for applying

to system logs. Appearance of log messages is discrete and
sparse compared to other metrics such as CPU or memory
usage. It makes the causal analysis difficult. To overcome
this issue, Kobayashi et al. [9] remove normal logs such as
periodically or constantly appeared logs, and then apply
the PC algorithm to an event time series to extract causal
relationships. They apply their proposed algorithm to 15
months long syslog messages and successfully extract a small
number of meaningful network events with causal relations.
In this work, we use the same dataset and the causal inference
results. We refer to a set of these results as the causality DB.



3 PRELIMINARY
3.1 Dataset
We use a set of network logs collected at SINET [17], a Japan-
ese research and education network. This network connects
over 800 academic organizations in Japan and consists of
eight core routers, 50 edge routers, and 100 layer-2 switches.
We prepared two types of datasets; the original log messages
(called Dataset 1) and the pre-processed log messages after
removing frequent logs (called Dataset 2). We detail our pre-
processing in §3.3. The summary of the datasets is shown in
Table 1. We used a commodity computer for the analysis.

3.2 Log template generation
As log messages are string data, statistical approaches cannot
be applied directly. Thus, we generate log templates from
raw log messages and then we classify logs into log tem-
plates and extract time-series data from their time stamps
for each template per device. The log template is a format
of log messages composed of variables (e.g., IP address, port
number) and other constants. Template generation prob-
lem is a well-known problem in log mining [13, 18]. In this
work, we adopt a supervised learning approach proposed
by Kobayashi et al. [10]. This algorithm is based on a CRF
(conditional random field), which is well-studied in natural
language processing and generates log templates composed
by description words and variable words from original log
messages. An example of log templates and raw log messages
are shown in Fig. 2. The top two lines are raw log messages
and the bottom line is a corresponding log template gener-
ated from them. “*" represents variable words. We manually
fixed misclassified templates.

As the result of this processing, we generated 1,789 unique
log templates. In this paper, we call the groups classified by
each log templates as events.

sshd[21]: Invalid user admin from 1.1.1.1
sshd[22]: Invalid user virus from 5.5.5.5

sshd[ * ]: Invalid user * from *

Figure 2: Example of log templates

3.3 Removing trivial log messages
The majority of log messages are related to daily processes,
such as cron, ssh authentication, and so on. These logs are not
helpful for trouble shooting because they commonly appear
and indicate daily process results. Furthermore, to process
a large amount of such trivial data cause serious accuracy
degradation and time consumption. In particular, the causal

inference method is greatly affected by frequent logs. Also,
the burst detectionmethod requires more time for processing
larger data. To remove such the frequent and unimportant
logs, we applied a frequent data filtering method to origi-
nal log messages. This process has two parts: (1) Remove
periodic logs by a Fourier analysis, and (2) Remove highly
frequent logs by linear fitting appeared in very short period.
In processing (1), we applied the Fourier transform to the
time series, removed the data whose peak of frequency spec-
trum exceeded a threshold, and applied the inverse Fourier
transform to reconstruct the time series. In Processing (2),
we applied the linear regression to a cumulative time series
of the data and calculated the regression error. If the error
is below a threshold, we removed the data. We combined
these two approaches because the Fourier analysis may miss
very short periodic data and the linear regression analysis
may not remove long interval data. Finally, we obtained non-
periodical log time series from the original log messages.

3.4 Burst detection
We detect log burstiness from log message time-series. The
log burstiness is a local state of a large number of log ap-
pearances. Kleinberg’s burst detection algorithm [8] is a
well-known method to detect burstiness from stream data.
We apply this algorithm to network log time series for burst
detection.
Kleinberg’s burst detection algorithm simulates bursti-

ness states for each time series data using an infinite-state
weighted automatonmodel. Thismethod estimates the bursti-
ness states by minimizing a state transfer cost function. It is a
batch processing and detects relative burstiness in the input
data. We briefly review the algorithm. It evaluates bursti-
ness based on the interval of the input data. The intensity of
burstiness is given by burst level i . When the burst level is i
in a state, the data arrival rate is distributed exponentially
f (x) = αe−αx . α is defined as αi = n

T s
i where n is the num-

ber of input data and T is a time length of input data. s is
a scaling parameter that indicates an arrival rate difference
between neighboring states. Each automaton states have
one burst level. State transition q is equal to maximizing
the posteriori probability P(q |x) where x is input data. Also
maximizing P(q |x) corresponds to minimizing a state transi-
tion cost function c(q |x). c(q |x) is represented as a sum of a
threshold parameter γ and p(x |q).

4 SINGLE BURST ANALYSIS
4.1 Methodology
We first analyze burstiness of single event time series with
the burst detection algorithm. We divide the dataset to one-
day long time series per event per device and detect bursti-
ness in seconds. We implemented the detection algorithm by
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Figure 3: Processing time

Python 3.6 and Pybursts, which is a python module of burst
detection. We empirically set the scaling parameter s = 2.0
and the threshold parameter γ = 1.0. As the algorithm does
not support a case of multiple events at the same time, we
randomly shift these appearance time to 0.001 seconds (i.e.,
serialized). We use the minimum level of the burstiness for
our analysis while the algorithm outputs several levels of
the burstiness.
We first demonstrate the processing time of the burst

detection algorithm is reasonable. Figure 3 shows the number
of time series in a day and its processing time. We confirm
an increase in the processing time for the number of time
series. All of one day data is processed within 300 seconds
in the commodity hardware.

4.2 Result of burst detection
We apply the burst detection to each event of Dataset 1 and
2. As summarized in Table 1, we detected 400K bursts in the
non-filtered data and 32K bursts in the filtered data. These
correspond to about 800 and 70 bursts per day per event. In
other words, only 7.5% of bursts are potentially meaningful.
Figure 4 illustrates some examples of detected burstiness
data. Each graph shows one-day cumulative time-series of
an event. Gray rectangles indicate detected bursts.
We confirm mainly two types of burstiness; Burst with

periodic data (Fig. 4(a)) and Pure burst (Fig. 4(c)). All of the
bursts obtained in the dataset are not always useful for the
network operation. For example, periodic burst due to daily
processing are remained in Fig. 4(b). Indeed, this is a time se-
ries in Dataset 1 and this type of data is successfully removed
in Dataset 2. These results demonstrate the importance of
pre-processing, especially, removing the strictly periodic
logs from the data. On the other hand, like Fig. 4(a) and
Fig. 4(c), bursts with periodic data and pure bursts are im-
portant information for troubleshooting because changes of
log appearances are a signal of system state changes.

5 PAIR BURST ANALYSIS
In this section, we intend to extract meaningful burst event
pairs for troubleshooting from the results of the single burst
detection using the co-occurrence of bursts and causality
between events. First, we analyze the event co-occurrence
related to burstiness using single burst detection results.
Next, to analyze causality of burstiness, we compare the
co-occurrence of bursts with the causal inference results.
Finally, we classify causality of burstiness based on an event
similarity using dynamic time warping distances [2].

5.1 Co-burst analysis
5.1.1 Methodology. We define Co-burst and a burst co-

occurrence ratio to evaluate relevance between two bursts.
Co-burst is a pair of two co-occurred bursts in two event
time series. Co-burst event pair is a pair of two events which
include at least one co-burst. We define the co-occurrence of
two bursts if they start in the same 1-min bin. We calculate
the co-occurrence ratio of events A and B as J (A,B) = |A∩B |

|A∪B |
.

J (A,B) is the Jaccard similarity coefficient 1; The higher
J (A,B), the more frequent bursts occur at the same time
between event A and B. A and B are events that are sets of
time series data classified by each log templates, and |A| and
|B | are the total number of bursts detected in 456 days. |A∩B |
is the total number of co-bursts between event A and B in
456 days. |A ∪ B | is a disjunction of A and B.

5.1.2 Co-burst analysis result. We calculate the burst co-
occurrence ratio using the single burst detection result (§4.2).
The number of co-burst event pairs is 29,107 in Dataset 1 and
22,756 in Dataset 2. The distribution of the co-occurrence
ratio is shown in Figs. 5 and 6. The vertical line shows the
co-occurrence ratio in a log scale and the horizontal one the
size of the union set of each event pair. The larger |A ∪ B |,
the more number of bursts is occurred in event A or B. Each
dot shows a co-burst event pair.
In Dataset 1, 22% of dots are located in |A ∪ B | > 10, 000.

These pairs are mostly periodic bursts, shown in Fig. 4 (b).
As in §4.2, these bursts should be removed because they are
the result of less useful daily processes. On the other hand,
shown in Fig. 6, such larger points (> 10, 000) disappeared
in Dataset 2. This result confirms that the pre-processing in
§3.3 works correctly and is effective to remove the trivial
burst pairs.

5.2 Comparison with causality DB
Here, we compare the co-burst analysis results to the causal-
ity DB that includes 2,776 causal event pairs obtained in the
prior work [9]. If the same event pair of co-burst events is
recorded in the causality DB, we consider that the co-burst
1We also obtained similar results with the Simpson index.
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Figure 4: Burstiness event examples

Co-burst Causal Co-burst
all 22,756 241 (1.06 %)

J (A,B) ≥ 0.1 17,541 215 (1.23 %)
Table 2: Co-burst and event causality

is not a coincident but a causal co-occurrence. We call such
event pair as a causal co-burst. Table 2 shows the number of
the causal co-bursts. The first row shows the total number
of causal co-burst event pairs and the second one shows the
number of events for J > 0.1. Red dots in Fig. 6 illustrate
such causal co-burst events, while gray dots illustrate not
causal but co-burst events.
Our results highlight two findings. First, we find a rela-

tionship between the causal co-burst events and the burst
coefficient ratios. In Fig. 6, most red dots located at an upper
part of the graphs, and over 89% of causal co-burst events
have larger than 0.1 coefficient ratio from Table 2. Focus-
ing on horizontally distributed causal co-bursts (red points),
we can see two clusters; a small burst disjunction cluster
(|A ∪ B | < 500) and large one (|A ∪ B | > 500). Inspecting
the detail of the large one, there are 1316 pairs and we con-
firm 487 pairs are derived from “show interface" command
(i.e., ordinal operation). The others (829 pairs) are triggered
with this command by chance. On the contrary, there are
only 1 pair related to the command in the small cluster. The
small cluster has 21,440 pairs and the number of the causal
co-burst pairs is 167. There are 156 causal co-burst pairs
in this cluster. Thus, we conclude that the causal co-burst
event pairs have relatively high coefficient ratios and the
frequency of their bursts is comparatively low. Therefore,
meaningful causal bursts are located at the upper left cluster
of red points in Fig. 6. Second, we confirm the effectiveness
to combine the causal inference results with the burst de-
tection. Combining the causal inference, we observe only
1% of them are remained. Therefore, 99% of co-burst event
pairs are coincident and we have to focus on 1% of them for
extracting meaningful bursts.
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Figure 5: Burst co-occurrence ratio (Dataset 1)
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Figure 6: Burst co-occurrence ratio (Dataset 2)

5.3 Time series similarity and co-burst
classification

Here, we measure the time series similarity between causal
co-burst event pairs and classify the type of co-burst towards
practical system management.

5.3.1 Time series similarity and causality. Figures 7 and 8
visualize examples of temporal patterns of causal co-burst.
Orange and blue plots indicate two types of events. Check-
ing the details of the log events, we confirm these examples
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Figure 8: Co-burst (from multiple devices)

are helpful in network operation. In Fig. 7, login and au-
thentication events in one device obviously have a causal
relationship. Also in Fig. 8, an outage of a L2 switch invokes
a bypass event, which means a change of network routes to
avoid outage devices and keep network availability.
However, these two examples are different in whether

they are triggered from one network activity or multiple
ones. As shown in Fig. 7, log in activity always includes both
log in and authentication event. On the other hand, in Fig. 8,
a system down and enabling bypass events are not always
appear at the same time. This is because system down and
bypass event come from different network activity. Therefore,
there are two types of event causality. (1) Causality from one
network activity, and (2) Causality between different network
activities. This difference also appears in time-series. Two
events in the pair of type (2) exhibit almost the same pattern
during a whole time-series, while the type (1) only shows the
same pattern locally. Thus it is valuable to classify these two
types of co-burst based on a similarity of whole time-series
because we can distinguish whether causal co-burst is type
(1) or type (2).

5.3.2 Time series similarity analysis with Dynamic Time
Warping distance. We introduce a similarity of temporal pat-
terns of causal co-burst events by using Dynamic TimeWarp-
ing (DTW). This similarity enables us to distinguish whether
causal co-burst events come from different network activities
or same one.
To calculate the similarity of two events, we should con-

sider a case that two time series are mostly similar but par-
tially different. Thus, the strict comparison of two time se-
ries may miss potentially similar events. DTW is a dynamic
scheduling method to compare the similarity between two
time-series. It can disregard the difference of periodicity
and data size. First, DTW processes data points matching
between two events which minimize distance of matching
points. We choose the absolute distance of log occurrence
time as an inter-points distance. Then, we aggregate all the
inter-points distance as the DTW distance (similarity).

We apply this method to all the causal co-burst event pairs
per day. We set the similarity threshold to 10,000, meaning
that we permit up to 10,000 seconds-length (i.e., about 3
hours) errors in total per day. For each event pairs, if DTW
distance is under threshold, we classify them as similar pairs
and otherwise as dissimilar ones. The result is shown in Fig. 9.
The horizontal line indicates manual classification of events
and vertical one does the number of appeared days. In the
each bar, blue part shows similar pairs and orange part shows
dissimilar ones. There are 40 pairs of event classes and 13
pairs are classified dissimilar in more than half of appeared
days (red labels). To focus on these 13 pairs, they include
9 pairs of two different classes. We consider these types of
pairs as type (1) (see §5.3.1) and we successfully classify them
with DTW distance. Therefore, we can distinguish whether
a causal co-burst comes from type (1) or type (2) based on
time series similarity. This metrics is useful to evaluate the
complexity of causality.

6 DEVICE-BASED BURST DETECTION
Previous sections focused on the burstiness appeared in time
series per event per device. Here, we analyze time series
aggregating all events per device.

6.1 Device-based log burstiness
We aggregate events per device and apply the burst detection
to them; The detection method and its parameter setting
are the same with the single burst detection. There are 130
devices and 1,789 templates in Dataset 2.We aggregate events
across all the templates in each devices (i.e., 130 devices× 456
days). We detect 21,670 bursts and refer to them as device-
based bursts.
We find two types of device-based burst by analyzing

major templates contributing to device-based bursts. One is
the burst that is also detected in each events (§4.2) and the
other is only detected in this device-based analysis. Figure 10
(a), (b) and (c) shows an example of the device-based burst.
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Figure 9: DTW distance distribution. Red labels show dissimilar pairs classified by DTW distance.

The black line shows device-based time-series. Other lines
show some event time series in the device.
Commonly, one or two events dominate a majority of

the device-based logs in Fig. 10(a). Thus, some device-based
bursts appear due to a few dominant events and these bursts
have been similarly detected in the single burst analysis
(§4.2). We can see that a burst starts in two major events
(events 1 and 2) as well as the device-based burst at 3:00. On
the contrary, a device-based burst also appears when many
types of small events occur at the same time. In Fig. 10 (b), we
can see a device-based burst at 20:00 without such majorities.
We further focus on the latter type of bursts (such as shown in
Fig. 10 (b) and (c)) because the previous event-based analysis
missed finding them.

6.2 Device-based burst detection
We extract the bursts that do not appear in the event-based
analysis from the device-based bursts. Here, we focus on
such 3,735 bursts extracted from 21,670 bursts.

To investigate events contributing device-based bursts, we
dig into what happened at that time. Figure 10 (b) shows
an example of a device-based burst. Observing many events
related to system standby and power supply occurred at the
same time, we understand a system reboot happened on this
device due to some reason.
In another example (Fig. 10 (c)), a device-based burst ap-

pears from 22:00 to 23:00 as well as many OSPF and BGP
events. This suggests some routing errors. Note that this
burst cannot be detected by the event-based analysis, thus,
the device-level aggregation is useful as well as the event-
level analysis.

6.3 Comparison with causality DB
To analyze the causality between events in device-based
bursts, we compare them with the causality DB. Because
we only know causality between two events, not multiple
events from the causality DB, we inspect whether the event
pairs have causality. Figure 11 shows the ratio of the number
of causality event pairs to all the pairs of events contribut-
ing device-based bursts. The vertical axis indicates the ra-
tio: CausalEventPairs

EventsC2
. The horizontal line shows the number of

events and each point corresponds to device-based bursts.
We confirm that most events composing device-based bursts
do not have causality. However, we find some cases in which
events in the device-based burst have causality considering
from log contents, not from the causality DB. Figure 10 (c) is
such an example. A device-based burst is appeared in around
22:00-24:00 and both OSPF and BGP events contribute to the
device-based burst. The two events obviously have causal-
ity in terms of network operation. However between BGP
and OSPF events, time-series causality is not recorded in
the causality DB. Therefore device-based burst analysis can
detect causality which cannot be detected by time-series
causal inference method and device-based burst analysis can
improve the causality analysis.

7 CONCLUSION AND FUTUREWORK
We focused on burstiness and causality appeared in network
log messages. We conduct three types of analysis: single,
pair, and device-based burst detection. To combine burst de-
tection results, causal inference results and other metrics
such as burst co-occurrence ratio and dynamic time warp-
ing distance, we reduce a large amount of trivial bursts, and
extract meaningful information from log messages. We find
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(b) Device-based burst caused by multiple events
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(c) Device-based burst caused by multiple events
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Figure 10: Device-based burst examples
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Figure 11: Device-based burst distribution

that 7.5% of co-occurred bursts have true causality. Our sim-
ilarity analysis separates whether the causality of co-burst
comes from one network activity or multiple ones. In the
device-based burst detection, we find 3,735 bursts that are
only found by this multi variate analysis. Also we find some
causal bursts which are not found in the existing causal infer-
ence results. As a future work, we plan to extend our results
in this study to an automated log analysis system.
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