
/dev/stdpkt: A Service Chaining Architecture with
Pipelined Operating System Instances in a Unix Shell

Motomu Utsumi
The University of Tokyo, Japan
motomu@hongo.wide.ad.jp

Hajime Tazaki
IIJ Research Laboratory, Japan

tazaki@iij.ad.jp

Hiroshi Esaki
The University of Tokyo, Japan

hiroshi@wide.ad.jp

ABSTRACT
Network Function Virtualization is being recognized as an
important solution to satisfy a wide spectrum of user require-
ments, such as cost-e�ective and �exible service provision-
ing. Service Function Chaining is a key function in Network
Function Virtualization to achieve rich and �exible pipelined
network services with multiple virtual network functions.

We have investigated the implementation of function chain
using a shell pipeline of Unix processes, which is the base
technology contributing the practical success of the Unix
philosophy.
In this paper, we evaluate the applicability of this idea in

the function chaining scenario by conducting benchmarks in
possible use cases. The evaluation is based on the prototype
system which extends an existing userspace network stack,
Linux Kernel Library, because it can use various mature net-
work functions and has various performance optimization
techniques. The evaluation con�rms that, although the pro-
totype system needs some performance improvements, the
complex packet processing provided by functional chains of
virtual nodes can be completely functional. Furthermore, we
demonstrate up to 25% improvement on application goodput.

CCS CONCEPTS
•Networks→Middle boxes / network appliances; Net-
work management;

KEYWORDS
Service Chaining; Network Function Virtualization; Middle-
box; Unix pipe

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for pro�t or commercial advantage and that copies bear
this notice and the full citation on the �rst page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior speci�c permission and/or a fee. Request
permissions from permissions@acm.org.
AINTEC ’17, November 20–22, 2017, Bangkok, Thailand
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5551-3/17/11. . . $15.00
https://doi.org/10.1145/3154970.3154972

ACM Reference Format:
MotomuUtsumi, Hajime Tazaki, andHiroshi Esaki. 2017. /dev/stdpkt:
A Service Chaining Architecture with Pipelined Operating System
Instances in a Unix Shell. In AINTEC ’17: AINTEC ’17: Asian Internet
Engineering Conference , November 20–22, 2017, Bangkok, Thailand.
ACM, New York, NY, USA, 8 pages. https://doi.org/10.1145/3154970.
3154972

1 INTRODUCTION
By fully utilizing the power of virtualization, Network Func-
tion Virtualization has the potential to solve not only the
original motivation of replacing hard-to-upgrade facilities of
network functions based on hardware appliances, but also to
bring the �exibility of composing those functions by chain-
ing/concatenating multiple functions. We believe that the
�exibility of full recomposablility is a key to making the
technology useful in practice.
We implemented function chaining using Unix pipelines

in a standard Unix shell. Unix pipelines, �rst championed
by McIlroy [6], and later expanded to network resources by
Plan9 from Bell Labs [10], concatenates multiple programs
into a stream to process data. Following the Unix philoso-
phy, composing a simple program (or function) which does
a simple job well, then chaining them to do larger jobs, we
implemented Service Function Chaining in a Unix shell, pro-
viding modularity, simplicity, robustness, etc [12], making
a well-working system. Prior work such as EtherPIPE [5]
showed that this idea is useful for simple network packet
processing. However, it did not function well and was di�-
cult to implement, if the processing was complicated such as
network address translation (NAT) or load balancing with
stateful connection tracking.

While Unix pipeline permits the bene�ts mentioned above,
there are multiple concerns with applying the idea to Ser-
vice Function Chaining–lack of feature-rich functionality
of network protocols in which a handcrafted Unix applica-
tions have, the performance shortcomings by repurposing
the Unix pipe as a network channel, and the half-duplex
nature of Unix pipe.

This paper explores the applicability of Unix pipelines for
service function chaining and evaluates the idea with our
prototype implementation, called /dev/stdpkt by extending
Linux Kernel Library (LKL) [11]. The evaluation consists

https://doi.org/10.1145/3154970.3154972
https://doi.org/10.1145/3154970.3154972
https://doi.org/10.1145/3154970.3154972

AINTEC ’17, November 20–22, 2017, Bangkok, Thailand Motomu Utsumi, Hajime Tazaki, and Hiroshi Esaki

of a set of application goodput benchmarks and clari�es
its bene�ts for creating function chains with rich network
functions. Our contributions in this paper include:

• The design and implementation of /dev/stdpkt to
provide network function platform with Unix pipes
and feature-rich userspace network stack.

• The benchmarks with TCP/UDP goodput measure-
ments in practical scenarios (§ 4.2) and the duration
of instantiation of network functions (§ 4.3).

• We also envision the possible use cases of function
chain under the Unix pipeline framework (§ 4.4).

2 REQUIREMENTS
Service function chaining can be divided into two compo-
nents, network function and its interconnect. In a simple
case, we can use an application running on a commodity OS
over a virtual machine as a network function, and network
devices such as tap and bridge as an interconnect since we
do not face serious performance issue with this degree of
complexity. However, when deploying a large number of
network functions in a single physical node, there are new
set of requirements that must be achieved for decent service.

Using commodity OSes for the function chaining presents
various bene�ts of reusability of an existing application, a
rich set of supported network protocols, as well as the avail-
able options for development facilities such as tools and
languages. However, those bene�ts become an obstacle (or
generality tax [14]) when it comes to specializing the soft-
ware stack such as high-performance network functions.
This was pointed out by prior work (ClickOS [9], OSv [3],
MirageOS [7]) on designing of network function with the fact
that the packet processing overhead of commodity OSes and
boot latency are large. On the other hand, several proposals
on alternate interconnect such as VALE [13] also addressed
the issue of general-purpose operating systems and proposed
methods to completely bypass the kernel-based network
stack in order to avoid low-speed code path of packet pro-
cessing. These approaches are trying to achieve high-speed
packet processing and quick boot, but at the cost of func-
tional degradation. For instance, those proposals lack various
network functionalities such as full TCP stack with various
congestion avoidance algorithms, packet �ltering and modi-
�cation framework1, packet encapsulation protocols and so
on.

Our motivation is to �ll the gaps of the drawbacks of prior
work in order to satisfy the requirements of various users and
services. The following lists the set of requirements toward
our goal.
R1: Reusability of existing applications.
R2: Lightweight and quick instantiation.
1net�lter (http://www.net�lter.org/) in Linux for instance.

Application

LKL system call

LKL

FS

VIRTIO

pipe rx pipe tx

Anonymous pipe
Named pipe

NET MM
Linux kernel

DRIVERS

ASCII mode

Binary mode

Anonymous pipe
Named pipe

ASCII mode

Binary mode

Figure 1: LKL application components and its ex-
tended modules (hatched area): pipe as a network
channel.

R3: Reliable and feature-rich network functions.
R4: Development �exibility.
R5: Reasonable performance in function chaining.

The next section describes how we address the above
requirements with our prototype implementation.

3 DESIGN AND IMPLEMENTATION
We design and implement a service function chaining archi-
tecture by extending LKL. Our prototype implementation,
named /dev/stdpkt, uses LKL as a network function plat-
form and uses a Unix pipe as an interconnect. LKL allows us
to run unmodi�ed Linux applications over Linux network
stack (originally implemented for a kernel-space program)
so that features such as packet �ltering by net�lter can be
easily accomplished. This also gives us development �exi-
bility since plenty of Linux applications can be used as-is.
Furthermore, the boot duration is reasonably quick (detailed
in § 4.3) since an instantiation only involves a process invo-
cation, which is often faster than instantiating an OS via a
generic hypervisor such as QEMU.
In this section, we describe how our design addresses re-

quirements (§ 2) and the challenges to the design for complex
packet processing in a shell pipeline.

3.1 Challenges
Feature rich network function: To provide feature-rich
network function, we initially thought that we could extend
Linux virtual machines to run in a Unix shell and connect
each virtual machine via a pipe. However, a Linux virtual ma-
chine is heavy and takes a time to boot (four seconds in our
measurements § 4.3). This latency will spoil the shell usabil-
ity and prevent us from providing multiple network function
on demand. Additionally, since the required function in a
Unix shell is only processing the packet, we do not need any
other feature such as isolation of multiple processes or user

http://www.netfilter.org/

/dev/stdpkt: Pipelined Operating System Instances in a Unix Shell AINTEC ’17, November 20–22, 2017, Bangkok, Thailand

◆ ⇣
[DST_MAC] [SRC_MAC] [Eth_Type] XX XX XX ...
[DST_MAC] [SRC_MAC] [Eth_Type] XX XX XX ...✓ ⌘

Figure 2: Packet format in ASCII mode.

and kernel space separation. Some prior work proposed light-
weight operating systems for achieving quick boot and high
performance [9] [3]. Though using these operating systems
seems to meet our requirements (R2 and R5), these operating
systems typically provide fewer functionalities than Linux.

Function chain in a shell pipeline: Unix pipeline is
process chaining for a data stream, each process emits data
to standard output which directs to the standard input of the
next process via a pipe character "|". The output of a program
can be used as the input of another program to trim, edit,
or �lter data. And the output can pass to other commands.
While the pipeline in a shell is usually unidirectional, data
goes through bidirectionally in our situation since packet
�ow is usually bidirectional.

3.2 Design
Our design choice, to overcome the challenges, is extending
a userspace network stack derived from LKL, to harmonize
with Unix shell pipeline. Figure 1 illustrates the detail of one
LKL application component. An application linked with LKL
works as a network function while an anonymous pipe (stan-
dard input, output) and a named pipe connected between
other processes work as interconnects.
The interconnect is implemented as a typical virtio net-

work device as other virtual network devices available in LKL.
Therefore, the extension is relatively small2 while retaining
full functionalities such as hardware o�oad or con�guration
interfaces for LKL. The pipe-based virtual network device
has two di�erent modes of packet representation, binary
mode and ASCII mode: the binary mode writes and reads the
stream of raw packets to the device while the ASCII mode
translates the raw data into the text-based strings, which the
format is illustrated in Figure 2 (we use the same format as
proposed in EtherPIPE [5]). This ASCII mode is useful if we
use Unix commands such as sed, awk, or grep together with
pipes.

Using a shell and pipes are enough to describe a network
topology. For instance, we can connect two LKL network
applications by a pipe, and can connect a group of LKL in-
stances via a branch of a pipe by using tee command3.
LKLapp1 | tee named pipe1 | LKLapp2

2The modi�cation is around 500 LoC.
3tee is the command to copy/duplicate the data from standard input to
standard output.

◆ ⇣
IF0=�tap0� IF1=�named pipe1|/dev/stdout�\

LD_PRELOAD=liblkl-hijack.so \
./nat-config.sh | \ # iptables -t nat

IF0=�/dev/stdin|named pipe1� IF1=�tap1� \
LD_PRELOAD=liblkl-hijack.so \
./firewall-config.sh # iptables -A DROP✓ ⌘

Figure 3: Command: NAT and Firewall chaining.
LD_PRELOAD used in this example is a way to dynami-
cally link a library at runtime.

LKLapp3 < named pipe1

3.2.1 Feature rich network stack. Using LKL as a feature-
rich network stack brings other bene�ts. We can reuse vari-
ous Linux applications if LKL supports application program-
ming interface (API) used by the applications. In addition
to that, the mature development environment such as tools
and languages are also available as-is, thanks to the com-
patible interface of LKL with typical Linux system. Finally,
since an instantiation of network functions only involves a
single process invocation, boot time is very quick compared
to hypervisor-based virtual machines.

3.2.2 Multiple pipes for bidirectional communication. To
achieve bidirectional communication in a shell, we use an
additional named pipe since anonymous pipes are unidirec-
tional. By writing bytes to standard output, an LKL applica-
tion can transmit packets via pipes, then the next process
receives the packets at the other end of pipes from standard
input. Based on the LKL framework of network interface
backends (i.e., channels)4, we extended LKL 1) to utilize pipes
as a network channel and 2) to support multiple network
interfaces in a single LKL application. As a result, an LKL
application can be used as a single command to cooperate
with other programs in a shell via pipes.

3.3 Usage
A set of commands in Figure 3 is an example service func-
tion chain with our proposal. A combination of iptables
commands allows us to create a function chain of NAT and
�rewall, with the help of net�lter framework within LKL.
The command line generates a network topology illustrated
in Figure 5a: the (nat-config.sh) script contains iptables
command to con�gure a source address translation at the
outgoing interface (stdout of the �rst command) and the
firewall-config.sh script, also described with iptables
command, �lters packets received from stdin based on the
con�gured rules.
4Currently LKL supports tap devices, raw sockets, and Intel DPDK devices.

AINTEC ’17, November 20–22, 2017, Bangkok, Thailand Motomu Utsumi, Hajime Tazaki, and Hiroshi Esaki

named
pipe

Host

netperf

LKL

pipe netserver

LKL

(a) Topology of directly
connected measurement.
(netperf | netserver)

(b) UDP application goodput. (c) TCP application goodput.

Figure 4: Application goodput in function of payload size of transmitted packets with the standard deviation from
50 replications.

4 EVALUATION
The evaluations consist of three parts: a packet processing
speed measurement of application goodput (§ 4.2), a boot
time benchmark (§ 4.3), and a use case demonstration (§ 4.4).
The goal of our evaluation is to understand the performance
of our prototype both as network function and intercon-
nect. We compared our implementation with other network
function implementations, OSv [3] and typical Linux virtual
machine over KVM, as well as Docker container. As for al-
ternatives of interconnect to our pipe-based implementation,
we used Linux bridge with tap devices, and VALE [13].

VALE is a Virtual Local Ethernet which focuses on quickly
switching the packets. VALE is not suitable for our research
purpose because applications have to use netmap API to
connect to VALE. However, VALE is one of the candidates
for realizing high-performance interconnect. Thus we ex-
tended LKL to use VALE as a network channel to compare
the performance with Unix Pipe.

4.1 Experimental Setup
Our tests in this sectionwere conducted on the samemachine
using a single-CPU Intel i7-3770K server with four cores
at 3.50GHz and 32 GB RAM. In all cases, we used Ubuntu
16.04, Linux kernel 4.4.0 for host and guest OS, netperf 2.7.05,
iptables 1.6.1, QEMU 2.9.93, Docker 1.12.6, VALE6, OSv 0.24-
425-g77b1f05, and our extended LKL7.

4.2 Packet Processing Speed
Directly connected LKL applications: We measured the
application goodput between two network function instances
directly connected via a network channel as illustrated in
Figure 4a. We used TCP_STREAM and UDP_STREAM mode
of netperf to measure how fast the network function in-
stance sends and receives packets. We changed the payload
size of netperf and measured 50 times for each payload size.
5https://github.com/HewlettPackard/netperf
6https://github.com/luigirizzo/netmap code downloaded at Sep 22, 2017
7https://github.com/libos-nuse/lkl-linux-pipe

Table 1: Combination of instance and interconnect.

instance interconnect legend
LKL Unix pipes LKL-pipe
LKL bridge LKL-br
LKL VALE LKL-vale
Linux VALE Linux-vale
OSv VALE OSv-vale

In this measurement, to maximize the application goodput,
we con�gured network function instances as follows. In the
measurement with LKL and Linux, we used MTU size 60000
bytes so as not to fragment the packets, enabled checksum of-
�oad, TCP Segmentation O�oad (TSO), and allowedmerging
receive bu�ers to reduce CPU overhead. In the measurement
with OSv, we can not change MTU size so we used 1500
bytes. Pipe bu�er size was 65536 bytes which is default size
in Linux kernel 4.4.0. We used taskset command for CPU
pinning to LKL application. We did not use the CPU pinning
to Linux and OSv virtual machine because it did not improve
the goodput while LKL did. Table 1 shows the combination
of network function and interconnect we measured.

Figure 4b and 4c show the measured UDP and TCP appli-
cation goodput in function of the payload size. The goodput
increases along with the increase of payload size at most of
the payload size, and Linux and OSv results outperform that
of LKL in most of the cases. Note that the reason why the
result of TCP is better than that of UDP is because TCP stack
has a segmentation-o�oad feature while UDP does not.

We observed that the choice of interconnect with LKL does
not present any signi�cant di�erences while OSv and Linux
do. This suggests the bottleneck during packet processing
is inside LKL, not in an interconnect, thus using VALE with
LKL, in this case, does contribute to the overall performance
of LKL.

Connected viamulti-hopnodes:Consideringmore prac-
tical use cases, we measured the network performance of
the two network functions chaining. Figure 5a illustrates
the topology of NAT and �rewall LKL application chaining

https://github.com/HewlettPackard/netperf
https://github.com/luigirizzo/netmap
https://github.com/libos-nuse/lkl-linux-pipe

/dev/stdpkt: Pipelined Operating System Instances in a Unix Shell AINTEC ’17, November 20–22, 2017, Bangkok, Thailand

Host
br0 br1

pipe

named
pipe

NAT
(iptables)

LKL

firewall
(iptables)

LKL netserver

veth1tap0 tap1veth0

netperf

(a) Topology of chaining use case measure-
ment. (netperf | iptables | iptables | net-
server) (b) UDP application goodput. (c) TCP application goodput.

Figure 5: Application goodput in function of payload size of transmitted packets with the standard deviation from
50 replications.

Table 2: Combination of instance, interconnect, and
network function.

instance interconnect network function legend
LKL Unix pipe routing x 2 LKL-pipe-route
LKL Unix pipe NAT, �rewall LKL-pipe-nat
LKL bridge tap routing x 2 LKL-br-route
LKL bridge tap NAT, �rewall LKL-br-nat
Linux bridge tap routing x 2 Linux-br-route
Linux bridge tap NAT, �rewall Linux-br-nat

with Unix pipe network channel. We employed IP routing,
NAT, and �rewall as network functions in a chain. In this
measurement, NAT implemented by iptables converts the
IP address of the outgoing interface. Firewall implemented
by iptables with 500 DROP rules which do not match any
packets between netperf and netserver. Other con�gurations
are the same as the previous experiment. Table 2 shows
the combination of the instance, interconnect, and network
function we measured.

Figure 5b and 5c plot the UDP and TCP application good-
put in function of the payload size. The UDP application
goodput increased according to the increase of payload size.
At most of the payload sizes, chaining of two routing ob-
tained higher goodput than chaining of NAT and �rewall:
this is as expected since the packet processing of NAT and
�rewall is clearly heavier than pure IP routing.
It is worth noting that unlike the result of previous ex-

periment (Figure 4), some of the goodput results with LKL
(LKL-br-route/nat) is higher than one of Linux
(Linux-br-route/nat) in both TCP and UDP: for instance,
the TCP and UDP goodput of 32K bytes packet with LKL
(LKL-br-route/nat) are 5% - 40% faster than with Linux
(Linux-br-route/nat). This result suggests that LKL has
a potential to process packets faster than Linux virtual ma-
chine if it works as a middlebox, not as an endpoint of com-
munication. Although the result of Linux-pipe-route/nat
does not perform as well as Linux-br-route/nat does, our
pipe implementation can be updated with our private version
of anonymous/named pipe.

Figure 6: Boot time of each instance: the error bar in-
dicates the standard deviation from 50 replications of
experiment.

4.3 Boot time
In order to measure boot time, we collected elapsed time
between the start of the commands and the reception of the
�rst packet from an instance at the host. We measured this
time with LKL, as well as with Docker container, Linux vir-
tual machine, and OSv on KVM. We also measured how the
numbers of network function instances on a single machine
a�ects the boot time. For this measurement, we booted a
large number of network function instances (100 instances)
in sequence. We conducted this experiment for 50 times. In
this measurement, LKL, Docker, and OSv called the sleep
command after booting while Linux did not do anything
after a boot completion.
Figure 6 shows the boot time of each network function

instance with the instance ID, which we assigned to each
instance. The boot time of LKL instance was 50 - 60 msec for
all instance ID. This is the fastest type of instance–the Docker
takes 240 msec at the fastest (5 times slower than LKL), OSv
boots 400msec (8 times slower), and Linux takes four seconds
(80 times slower). Note that we also observed the boot time
of OSv instances varies as the number of booted instances is
increasing. This is due to the concurrent processing load of
instances with OSv. In our measurement, single OSv instance
consumes more CPU time than other instances at around 50

AINTEC ’17, November 20–22, 2017, Bangkok, Thailand Motomu Utsumi, Hajime Tazaki, and Hiroshi Esaki

instances, and total CPU usage reached around 100% earlier
than the others.

Past research also conducted the similar experiment: ClickOS
boots in about 30 msec [9]. Jitsu unikernel, which is based
on MirageOS [7], takes 20 msec on x86 and 350 msec on
ARM [8]. OSv with memcached takes 600 msec to start serv-
ing requests [3]. In our measurement, the boot time of the
�rst OSv instance was 400 msec. Though the boot time can
vary depending on how “boot time” is de�ned and measured,
our results are comparable with the result of [3] and con-
�rm that LKL boots as quickly as other past research. OSv
developer [3] mentioned this boot time can be optimized
further using ramfs instead of ZFS. This optimization is also
applicable to LKL since we can change the con�guration of
LKL to support other features available in Linux.

4.4 Use case
In this section, we will demonstrate a couple of example
use cases of our proposal. A command line in Figure 7 repre-
sents port mirroring example by tee command to investigate
packet �ows. The tee command captures packets at the mid-
dle, duplicating them to the named pipe2. pktparser is our
original tiny packet parser, which reads the Ethernet packet
binary stream from standard input and generates the hex
dump to standard output. By using existing commands such
as text2pcap8 and tcpdump command9 to �lter and decode
packets, it can easily inspect packets generated by applica-
tions.◆ ⇣

IF0=�named pipe1|stdout� \
LD_PRELOAD=liblkl-hijack.so \
./app1-config.sh | \
tee named pipe2 | \

IF0=�stdin|named pipe1� \
LD_PRELOAD=liblkl-hijack.so \
./app2-config.sh;

./pktparser < named pipe2 | \
text2pcap - - | \
tcpdump -r -;✓ ⌘

Figure 7: Command: port mirroring.

A command line in Figure 8 conducts packet �ltering
by grep command. In this case, grep command blocks the
packet whose source or destination mac address is
‘00:11:22:33:44:55’.
8text2pcap is the command to convert ASCII hex dump to packet capture
format.
9tcpdump is the command to read packet capture format and print out a
description of the contents of packet.

◆ ⇣
IF0=�named pipe1|stdout� \

IFTYPE0=�ascii� \
LD_PRELOAD=liblkl-hijack.so \
./app1-config.sh | \

grep --line-buffered -v �001122334455� |\
IF0=�stdin|named pipe1� \
IFTYPE0=�ascii� \
LD_PRELOAD=liblkl-hijack.so \
./app2-config.sh✓ ⌘
Figure 8: Command: packet �ltering.

Moreover, as we showed in § 4.2, LKL can provide NAT
and �rewall implemented by iptables. Naturally, we can
use any combination of network function above.

5 DISCUSSION
So far, we have focused on the functionality and its applicabil-
ity of Unix pipeline to Service Function Chaining. However,
through our prototype implementation and benchmarks, we
can see a couple of possible bottlenecks. The rest of this
section describes the detail of possible bottlenecks, unsuit-
able applications, and suitable applications of our current
prototype implementation.

Bottleneck The �rst one is LKL. As shown in § 4.2, in the
measurement of directly connected LKL applications, choice
of interconnect with LKL has a small impact on application
goodput. However, OSv and Linuxwith VALE obtained better
goodput than LKL with VALE. This suggests the bottleneck
is not the interconnect but LKL.
In contrast, LKL with bridge obtained better goodput

than Linux with bridge in the measurement of multi-hop
nodes, Although we have not found the exact reason for this,
one possible reason is position of LKL instances in packet
communication. In the measurement of directly connected
LKL applications, we executed userland application which
sends/receives packets and LKL instances work as an end-
point, while in the measurement of multi-hop nodes, packet
handling was done in kernel space and LKL instances work
as a middlebox. Thus overhead of packet handling in LKL
would depend on the function of LKL instance. As future
work, we would pro�le more deeply and explore the possi-
bility of better performance with LKL.

Unix pipes are the next bottleneck. We are using pipes for
interconnects without any modi�cations, thus any packets
passed through LKL via pipes are copied at least twice: when
the left LKL application sends a packet, it copies packet data
from user space to kernel space during a write(2) system
call of the pipe, and then copied again at the right application

/dev/stdpkt: Pipelined Operating System Instances in a Unix Shell AINTEC ’17, November 20–22, 2017, Bangkok, Thailand

Table 3: Characteristics of various Service Function Chaining architectures.

R1:reusability R2: boot R3: feature R4: development R5: chaining
latency richness �exibility performance

EtherPIPE [5] ++ + – ++ -
OpenNetVM [1] - + - - ++
ClickOS [9] + + + - +
Jitsu [8] - + - - N/A
OSv [3] + + + + N/A
/dev/stdpkt (this paper) ++ + ++ ++ +

during a read(2) system call. Those memory copies can be
avoided if multiple processes share the memory resource by
implementing a private pipe which reduces the number of
data copies.
Another possible bottleneck is process scheduling. Pipe

and named pipe have a writer and the reader processes, and
every pipe has a bu�er, so if the writer process writes faster
than the reader, the writer cannot write to the pipe until the
reader reads the packet. This bottleneck would be solved by
introducing a process scheduler which consider the bu�er
occupancy. We plan to analyze this internal behavior more
deeply in future work.

Unsuitable application. The current implementation of
pipes is not dynamically con�gurable, we have to design the
connectivity in advance and then build the chains. There-
fore, it is di�cult to apply our proposal when chains are
dynamically updated or chaining path depends on each �ow.
Extending the current prototype implementation to accept
new channel creation would address this.

Suitable application. LKL application boots quickly (less
than 70 msec). Therefore, this idea is suitable for a short-lived
network function, we can deploy and destroy LKL network
functions in an instant on-demand. This enables operators
to use resources e�ciently.

6 RELATEDWORK
We have explored both network function and interconnect
in previous work. However, this work does not satisfy the
requirements we presented in § 2. Table 3 shows the charac-
teristics of prior work. The rest of this section describes the
detail of related work.
EtherPIPE [5] proposes a character device driver for a

network interface card to utilize Unix commands for packet
processing. From the context of Service Function Chaining,
this research uses Unix commands as network functions and
Unix pipes as interconnect. Their motivation came from the
fact that Unix commands (cat, grep, sed, awk) are su�cient
for simple packet processing (R1). The technique of process-
ing packets on UNIX shell is similar to our research. However,
the network functions o�ered by EtherPIPE are limited to

simple packet processing (R3), while we often need more
complicated packet processing at the middlebox such as con-
nection tracking and NAT with a stateful inspection. Their
achieved goodput was upto 1.5 Gbps with �ve MAC address
�ltering rules at 64 byte frame size. Their implementatin
was a proof of concept and performance was future work
for their research (R5).

NetVM [1] is a platform for running network function on
KVM. OpenNetVM [15] is based on NetVM architecture and
run the network function as a native process or a process in-
side Docker containers to realize lightweight, quick boot, and
isolation (R2). In their proposal, network function is actually
the callback function written in C language. Interconnect is
shared memory with Intel’s Data Plane Development Kit [2].
Network function manager provides zero-copy packets rout-
ing between network functions. As a result, OpenNetVM
achieved 40 Gbps with 5 network function chaining (R5).
However, we cannot run existing Linux application on their
platform (R1). If we want to implement the complicated net-
work application such as stateful �rewall or proxy which
terminates a TCP connection, it requires a reasonable amount
of re-implementation e�ort and it is hard to provide equal
stability of commodity OS (R3).

ClickOS [9] is a platform for middlebox processing based
on Xen hypervisor. They choose Click modular router [4] as
a programming abstraction of middlebox packet processing
(R1). In their proposal, network function is minimal oper-
ating system optimized for running Click and interconnect
is ClickOS Switch which is based on VALE [13] and shared
memory with Xen Memory Grant. They achieved quick boot
(about 30 msec) and 21.7 Gbps throughput with two directly
connected network function (R2, R5). However, if we need
a new module, we have to develop within Click framework
(R4). Moreover, unlike LKL which has full Linux kernel func-
tionality, ClickOS does not have a complete TCP stack (R3).
Jitsu [8] proposed architecture for providing an applica-

tion on demand with MirageOS [7], type-safe unikernel. Mi-
rageOS can be used as a network function and Jitsu showed
the possibility of provisioning a required application with
quick boot operating system on demand, indicating boot

AINTEC ’17, November 20–22, 2017, Bangkok, Thailand Motomu Utsumi, Hajime Tazaki, and Hiroshi Esaki

latencies of 350ms on ARM and 30ms on X86 (R2). However,
MirageOS focuses on running OCaml application. Therefore,
we cannot use existing applications and other languages to
develop (R1, R4).
OSv [3] proposed new operating system designed espe-

cially for virtual machine environment. They redesigned
many functions including network stack and achieved 24%-
25% higher performance of netperf TCP STREAM (single-
stream throughput) than Linux virtual machine at the ex-
pense of functionalities [3]. Furthermore, OSv achieved fast
boot, 600 ms (R2). Unlike other research and similar to our
research, one of their goals is running existing Linux executa-
bles by allowing application to call Linux ABI (R1). However,
LKL can support many more applications which are writ-
ten for Linux because LKL provides equivalent functionality
such as net�lter (R3).

7 CONCLUSION AND FUTUREWORK
This paper is the �rst attempt to design a Service Function
Chaining by applying Unix pipeline in a standard Unix shell.
We have proven the applicability of the Unix pipeline for
Service Function Chaining by showing performance bench-
marks and use cases.We have extended LKL to use Unix pipes
as network channel by taking several challenges to over-
come poor features of packet processing in Unix shell, and
half-duplex nature of Unix pipe. Though optimizations are
required, directly connected LKL applications reach 8Gbps
goodput with UDP and 6.5 Gbps goodput with TCP at most.
Furthermore, NAT and �rewall LKL application chains ob-
tain 10.5 Gbps goodput with UDP and 5.6 Gbps goodput
with TCP at most. The quick boot time of LKL application
(-70 msec) allows us on-demand instantiation for resource-
e�cient operations.

A couple of future directions are possible: 1) service chain-
ing �ows in our proposal are �xed thus not able to dynam-
ically update upon each network �ow request. This shall
be addressed by extending the current prototype to accept
new channel creation. 2) the base performance shown in this
paper suggests optimization to several components of our
prototype implementation. Our observations on the possible
bottleneck are listed and will be analyzed to provide more
detailed performance pro�ling in our future work.

8 ACKNOWLEDGMENTS
The authors thank to Matthieu Coudron for his comments
on this work and Zachary S. Bischof for his proofreading on
this paper.

REFERENCES
[1] H����, J., R�����������, K. K., ���W���, T. NetVM: High per-

formance and �exible networking using virtualization on commodity
platforms. In USENIX NSDI’14 (Berkeley, CA, USA, 2014), pp. 445–458.

[2] I����. Intel DPDK: Data Plane Development Kit. http://dpdk.org.
(Accessed Sep 26th 2017).

[3] K�����, A., �� ��. OSv—Optimizing the Operating System for Virtual
Machines. In USENIX ATC ’14 (June 2014), pp. 61–72.

[4] K�����, E., M�����, R., C���, B., J�������, J., ��� K�������, M. F.
The click modular router. ACM Trans. Comput. Syst. 18, 3 (Aug. 2000),
263–297.

[5] K���, Y., M������, T., H�������, H., C��, K., M����, R. V., ���
N�������, O. A packet I/O architecture for shell script-based packet
processing. China Communications 11, 2 (Feb 2014), 1–11.

[6] L�����������, B. THE UNIX ORAL HISTORY PROJECT . http://www.
princeton.edu/~hos/Mahoney/expotape.htm. (Accessed Jun 2nd 2017).

[7] M�����������, A., �� ��. Unikernels: Library operating systems for
the cloud. In ACM ASPLOS ’13 (New York, NY, USA, 2013), pp. 461–472.

[8] M�����������, A., �� ��. Jitsu: Just-in-time summoning of uniker-
nels. In USENIX NSDI’15 (Oakland, CA, May 2015), pp. 559–573.

[9] M������, J., A����, M., R�����, C., O������, V., H����, M., B������,
R., ���H����, F. Clickos and the art of network function virtualization.
In USENIX NSDI’14 (Berkeley, CA, USA, 2014), pp. 459–473.

[10] P�������, D. L., ��� W�����������, P. The Organization of Net-
works in Plan 9. In USENIX Winter. (1993).

[11] P������, O., G�������, L. A., ��� T����, N. R. I. C. R. . �. LKL: The
Linux kernel library. In RoEduNet, 2010 (2010), pp. 328–333.

[12] R������, E. S. The art of Unix programming. Addison-Wesley Profes-
sional, 2003, ch. Basics of the Unix Philosophy.

[13] R����, L., ��� L�������, G. VALE, a Switched Ethernet for Virtual
Machines. In ACM CoNEXT ’12 (New York, NY, USA, 2012), pp. 61–72.

[14] W�������, D., ��� K�����, R. Unikernel monitors: Extending mini-
malism outside of the box. In USENIX HotCloud ’16 (2016).

[15] Z����, W., �� ��. OpenNetVM: A Platform for High Performance
Network Service Chains. In ACM HotMIddlebox ’16 (2016), pp. 26–31.

http://dpdk.org
http://www.princeton.edu/~hos/Mahoney/expotape.htm
http://www.princeton.edu/~hos/Mahoney/expotape.htm

	Abstract
	1 Introduction
	2 Requirements
	3 Design and Implementation
	3.1 Challenges
	3.2 Design
	3.3 Usage

	4 EVALUATION
	4.1 Experimental Setup
	4.2 Packet Processing Speed
	4.3 Boot time
	4.4 Use case

	5 DISCUSSION
	6 Related Work
	7 CONCLUSION AND FUTURE WORK
	8 acknowledgments
	References

