
IoT WebSocket Connection Management Algorithm for Early
Warning Earthquake Alert Applications

Ajinkya Mulay
Indian Institute of Technology,

Hyderabad
ee14btech11040@iith.ac.in

Hideya Ochiai
�e University of Tokyo

ochiai@elab.ic.i.u-tokyo.ac.jp

Hiroshi Esaki
�e University of Tokyo
hiroshi@wide.ad.jp

ABSTRACT
IoT devices are increasingly being used in various applications and
their �eld is diversifying owing to their small size. Most of the
IoT architecture takes client and server model – IoT devices are
connected to a server on the Cloud. Real time communication, espe-
cially from the server to client, is necessary when we consider the
earthquake alert applications. WebSocket protocol, which has been
successfully used in browsers for bi-directional communication, can
be applied to such communication. However, we have to carefully
manage the loss of connection between the client and server. In this
paper, we propose a WebSocket connection management algorithm
for IoT, called reconnection with dynamic ping-pong algorithm
(RDPPA), focusing on improving and adapting the WebSocket pro-
tocol for connecting IoT devices. We implemented the algorithm
and carried out experiments for evaluatingmessage delivery latency
and the amount of tra�c overhead.

KEYWORDS
WebSocket, Internet of �ings, Connection Management, Earth-
quake

1 INTRODUCTION
With the increasing role of IoT in our life, the need for real-time and
bidirectional communication between IoT device and IoT server is
increasing. In the current Internet and Cloud - based architecture
multiple applications are running on the Cloud. IoT devices are
generally deployed behind a NAT or a Firewall which makes com-
munication from the Cloud to the devices challenging. For solving
this problem, it is considered that WebSocket will provide real-time
and mutual communication[2][8].

WebSocket[10] takes a client-server model as an upgraded ver-
sion of HTTP, and supports bidirectional communication. Web-
Socket itself is a browser based protocol originally, but because of
the bidirectional communication capability, it is also adopted in IoT
�eld. However, WebSocket communication is based on TCP, and
sometimes the connection is lost because of the existence of middle
boxes. Such middle boxes are network address translators (NAT),

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
UCC Companion’17, December 5–8, 2017, Austin, Texas, USA
© 2017 ACM. ISBN 978-1-4503-5149-2/2/17/12. . . $15.00
DOI: h�ps://doi.org/10.1145/3147234.3148094

Figure 1: Earthquake early warning noti�cation over Web-
Socket for (1) turning kitchen stove o�, (2) stopping eleva-
tors, (3) showing emergency exits, and (4) alarming people
before the S-wave, i.e., the main earthquake wave, arrives.

�rewalls, Web proxy servers, and any other security management
boxes but not IP routers.

We propose a WebSocket connection management algorithm
for IoT, called reconnection with dynamic ping-pong algorithm
(RDPPA), assuming to build a real-time natural disaster emergency
alert system. A server will be noti�ed from the meteorological
agency[14] and then if any parameter is above the disaster thresh-
old, a message containing data about the possible disaster will be
sent to the IoT device over WebSocket connection. �e IoT device,
will in turn take actions, e.g., (1) stopping its kitchen stove, (2) stop-
ping its elevator, (3) lighting emergency exit light, and (4) sounding
an alarm. Since all of this should occur in real-time within a second,
it is very important to deliver alert messages to the IoT devices with
no loss and delay.

IoT devices normally uses narrowband, i.e., bandwidth-limited,
cellular communication to save the communication fee [1]. �e
communication cost depends on the total volume of tra�c con-
sumed by the IoT devices. So, it is very important to reduce tra�c

Figure 2: Architecture for IoT WebSocket connection man-
agement

as much as possible, while keeping connection to the WebSocket
server.

For an emergency alert system its crucial that the delay should
be really small while having the highest possible reachability. Our
algorithm ensures to keep connection between IoT device and the
server and provide immediate alert noti�cation from the server.
We developed a prototype system and evaluated message delivery
latency and total amount of tra�c.

�e paper ahead is divided into the following sections. Section
2 talks about the related work. Section 3 explains the proposed
system model and the algorithm. Section 4 performs the evaluation.
Section 5 discusses the contribution of the algorithm and further
possibilities. Section 6 gives the conclusion of this paper.

2 RELATEDWORK
Historically there have been many protocols which enable bidirec-
tional communication and also keeps system alive for a long time.
Some of these include AJAX Long Polling and REST API. �ere
are also a few IoT speci�c protocols like CoAP, MQTT, MQTT-
SN besides WebSocket. But as concluded in [2], WebSocket is a
much more superior communication protocol in terms of energy
consumption, memory usage and performance. Since all three of
these parameters are vital for IoT devices, we have decided to use it
for the emergency alert system. By [3] we can see that WebSocket
outperforms REST API in terms of energy consumption and latency.

In e.g., [4–6], they discuss the use of WebSocket for remote
monitoring applications. But, they consider to use WebSocket for
the communication between a central server and a web browser,
i.e., user-interface.

[7] discusses the importance of bidirectional communication be-
tween an IoT server and a IoT device. [8] developed a tunneling of
IEEE 1888 messages over WebSocket connection in order to provide
bi-directional communication. [9] discuss the use of WebSocket for
controlling servomotor from the server side, but it is in an educa-
tional program. All of these works do not discuss the connection
maintenance of WebSocket, which we target in this paper.

3 IOT WEBSOCKET CONNECTION
MANAGEMENT

3.1 Architecture
Fig 2 shows the architecture for IoT WebSocket connection man-
agement. It consists of IoT WebSocket server and IoT device. �ese
two components are connected over a WebSocket channel, which
communication is initiated from the IoT device. �ere potentially
exists middle boxes (e.g., NAT, �rewall, proxy) that may kill the TCP
connection intentionally without notifying to the server and the
device. �e server and device exchange special messages, labelled
as SPI, CPO, CPI and SPO in the �gure, to check and keep the status
of connection. �e alert generator of the server receives external
signal (e.g., the beginning of earthquake signal) and sends an alert
signal to the a�ected IoT devices. �e IoT devices can take actions
to make our life safe, such as stopping elevators before the primary
huge earthquake waves arrive.

Formanaging theWebSocket connection, we propose a reconnec-
tion with dynamic ping-pong algorithm (RDPPA). In the algorithm,
server and device exchange, server ping (SPI), client pong (CPO) in
response to SPI, client ping (CPI), and server pong (SPO) in response
to CPI. Pings from client and server are issued with dynamic chang-
ing interval discovering the existence of the middle boxes. We here
describe RDPPA server side algorithm and client side algorithm.

3.2 RDPPA Server Side
We will be referring to the Algorithm 1 in this section. On the

server side, the inputs to the RDPPA Algorithm are Port Number
(Serverpor t) for webserver to start the connection on and the Server
Path (Serverpath) for one client. �e server starts a webserver
on Serverpor t and then handles the incoming connections with
the Connection Handle Function on its current IP address with
the path speci�ed by Serverpath . �e other inputs are timeinit ,
timef ixed and delayf ixed . Note that whenever a new connection
joins the HTTP connection is upgraded to a WebSocket connection
by an Upgrade function. A�er that the server algorithm proceeds
as shown in Algorithm 1.

Whenever a new client initiates connection with the server,
Connection Handle Function handles them. �is function has
3 threads - (1) Receiving �read, (2) Data sending �read and (3)
Ping-Pong Handling �read.

3.2.1 Receiving Thread. When the client starts it sends intro-
ductory data which includes the Device Type, ID and Periodic Time
Interval (PTI). �e device type and ID helps the server di�erentiate

Algorithm 1 RDPPA Server Side
1: Inputs: Serverpor t , Serverpath , timeinit , timef ixed ,
delayf ixed

2: Connection Handle Function:
3: Initialisation:
4: currentTime, previousTime, sendTime, strikes = 0
5: waitingTime = delayf ixed
6: PTI = timeinit
7: Receiving �read:
8: while true do
9: if Unique Introductory Data received from client then
10: Store client device type and ID
11: Update PTI to client PTI
12: else if Repeated Introductory Data then
13: Block device and disconnect
14: else if CPI received from client then
15: Send SPO back to client
16: else if CPO received from client then
17: PTI+=tf ixed
18: strikes = 0
19: end if
20: end while
21: Data Sending �read:
22: Send any alert/data to client if available
23: Ping-Pong Handling �read:
24: while true do
25: currentTime = time.now()
26: if (currentTime - sendTime) ≥ waitingTime AND (SPI sent)

AND (CPO NOT received) then
27: �ick Recovery Mode:
28: if strikes ≤ 3 then
29: strikes++
30: else
31: Close connection to client
32: PTI/=2
33: end if
34: else if (currentTime - previousTime) ≥ PTI OR (strikes ≥

1) then
35: Send SPI to client
36: sendTime = time.now()
37: end if
38: end while
39: Main:
40: Listen and run server on Serverpor t at Serverpath with han-

dle(Connection Handle Function)

the incoming clients and avoid repetitions. �e PTI is used for
sending pings. �e Receiving �read handles incoming CPI and
CPO and sends back SPO in response to the CPI. All these terms
and their usage will be explained in the Ping-Pong �read section.

3.2.2 Data Sending Thread. Whenever the server receives a
command to send an Alert or some kind of data to the client, this
thread sends it.

3.2.3 Ping-Pong Thread. As the main aim of this algorithm is to
make sure the TCP connection under the WebSocket is not killed

by intermediate boxes we have implemented a Ping-Pong system.
To make sure the client-server connection is alive both the server
and the client periodically check the connection at intervals of PTI,
by sending pings and waiting for a pong to return back in under the
waiting time of delayf ixed . �e PTI is initialised with the amount
of timeinit . Now since these ping pong will add tra�c overhead
to the data messages we have implemented a dynamic ping-pong
system. Whenever a ping sent gets the pong response withing the
delayf ixed time interval, we update the PTI by adding timef ixed
to the current PTI. �is increases the delay between consecutive
successful pings which reduces the tra�c overhead over time.

If on the other hand, the pong response to the ping fails to reach
within the delayf ixed time interval we resort to �ick Recovery
Mode. In this mode we send a pings until the device responds with
a pong under the delayf ixed time interval or 3 pings receive no
pong response. If a response is received the connection is assumed
to be alive and continues operating �ne while if no response is
received the server closes the connection.

3.3 RDPPA Client Side
Here we are going to refer to Algorithm 2. Initially the server is
assumed to powered on and waiting for new client connections.
�e client then is powered on and the inputs to it are the Server
IP Address (Serveraddr), Server Port (Serverpor t), Webserver Host
(WShost), Webserver Path (WSpath), TCP client object (TCPclient),
Web Socket Client Object (WSclient) and knows ownMACAddress.
�e other inputs aredelayf ixed , timeinit and timef ixed . �e client
initially turns on its Serial Monitor and then obtains IP address
by using its own MAC address and DHCP on the network its con-
nected to. A�er that, the client algorithm proceeds as described in
Algorithm 2. Here there are 2 parts in the Client Algorithm - (1)
Handshake Setup, (2) Main Loop.

3.3.1 Handshake Setup. Initially the Handshake Setup Func-
tion is executed. �e TCPclient object sends a connection request
on the port and path which the server is listening on via the net-
work (Wi-Fi, Ethernet or cellular) the client is accessing. If the
connection is not successful, then the client continues to try con-
necting periodically with a delay of 2 seconds until successful. Once
successful the client sets the WebSocket host and the WebSocket
Path and proceeds to initiate a WebSocket handshake. Again if
the handshake is unsuccessful, then the client continues to try the
handshake with a delay of 2 seconds until connected. Once the
handshake is completed the client sends introductory data to server
and breaks out of theHandshake Setup Loop and proceeds to the
Main Loop.

3.3.2 Main Loop. On every loop the TCPclient object checks
whether the client is connected. If it detects it is not connected then
it closes the current connection and proceeds to retry handshake
with the current PTI. Note that this method is unable to detect the
TCP kills done by the intermediate boxes and works only when
the underlying TCP connection is alive. If the TCPclient object
identi�es the connection is alive then the Main Loop is able to
receive Alerts sent by the server as well as SPI and SPO. In response
to SPI, theMain Loop sends back CPO. If SPO is received under the
waiting time of delayf ixed time interval then the PTI is updated by

Algorithm 2 RDPPA Client Side
Inputs: TCPclient , WSclient , Serveraddr , Serverpor t ,
WShost ,WSpath , delayf ixed , timeinit , timef ixed

2: Handshake Setup Function: (PTI)
while true do

4: currentTime, previousTime, sendTime, strikes = 0
waitingTime = delayf ixed

6: if TCPclient .connect(Serveraddr , Serverpor t) is successful
then
SetWSclient host (WShost) and path (WSpath) parame-
ters

8: ifWSclient handshake is successful then
Send PTI to server and BREAK from loop

10: else
Retry handshake

12: Delay(2 seconds)
end if

14: else if TCPclient .connect(Serveraddr , Serverpor t) is unsuc-
cessful then

Retry connection
16: Delay(2 seconds)

end if
18: end while

Main:
20: PTI = timeinit

Call Handshake Setup (PTI)
22: while true do

if TCPclient is connected then
24: currentTime = time.now()

if Alert Received from server then
26: Print out data and trigger hardware

else if SPI received from server then
28: Send CPO to server

else if SPO received from server then
30: PTI+=timef ixed

strikes = 0
32: end if

if (currentTime - sendTime) ≥ waitingTime AND (CPI
sent) AND (CPO NOT Received) then

34: �ick Recovery Mode:
if strikes ≤ 3 then

36: strikes++
else if strikes > 3 then

38: PTI/=2
Stop TCPclient and Re-initiate Handshake Setup
(PTI)

40: end if
else if (currentTime - previousTime) ≥ PTI OR (strikes
≥ 1) then

42: Send CPI
sendTime = time.now()

44: end if
else if TCPclient then

46: PTI/=2
Stop TCPclient and Re-initiate Handshake Setup (PTI)

48: end if
end while

Figure 3: Con�gurations for measuring message delivery la-
tency and WebSocket tra�c

adding timef ixed to the current PTI. �e PTI has been initialised
with the value of timeinit . If however the SPO is not received under
the delayf ixed time interval then the Client goes into the �ick
Recovery Mode just like the Server. It then just like the server
proceeds to send CPI to server until it receives an SPO or it has
completed 3 tries.

If the SPO is received within this time, then the connection is
assumed to be alive and everything continues to function normally.
On the other hand if the SPO is not received then the client closes
the connection and proceeds to re-initiateHandshake Setup with
the current PTI.

4 EVALUATION
We implemented RDPPA onto our prototype system and evaluated
the latency of alert message delivery and the amount of total tra�c.
As a reference, we compared RDPPA with a simple re-connection
algorithm (SRA). SRA does not exchange ping-pong messages but
simply re-initiates a WebSocket connection from a client side when
the client detects the loss of the TCP session.

4.1 Experiment Setting
Fig. 3 shows our experiment se�ing. We implemented IoT Web-
Socket server onto a laptop computer (DELL Inspiron 14, 5000) with
Golang Gorilla WebSocket library[11] in golang. We implemented
IoT devices onto an Arduino Mega compatible board with Arduino-
WebSocket library[12]. We have prepared other two Arduinos for
measuring latencies of the alert message from the server to the
client. For Golang to Arduino Serial Communication Tarm Serial
library was used. [13] As for the network, we prepared three types
of networks as follows:

• Case 1 (Ethernet): Direct connection between client and
server over Ethernet, i.e., on an IP network segment. �ere
were no middle boxes.

• Case 2 (Wi-Fi): Connection over our university campus
network. �ere was a NAT between client and server, but

Table 1: Average message delivery latency. 3G case has
achieved almost same performance as Wi-Fi case. As for
SRA for 3G, data was not available because of the failure of
message delivery.

Test Network (applied Algorithm) Average Delay [ms]

Ethernet (SRA) 0.010

Ethernet (RDPPA) 0.011

Wi-Fi (SRA) 6.05

Wi-Fi (RDPPA) 7.04

3G (SRA) N/A

3G (RDPPA) 7.89

this NAT is con�gured not to kill TCP connection for 7
days.

• Case 3 (3G): Connection over a carrier network. �ere are
supposed to be several black-boxed middle boxes between
client and server.

In each of these networks we tested the websocket connection
between the Arduino, i.e., IoT devices, and the IoTWebSocket server
on SRA and RDPPA.

4.2 Message Delivery Latency
According to the Block diagram in Fig. 2, a common server is
sending the exact same message to two Arduinos. One Arduino is
connected to the server via one of the 3 MAC Layers (either Wi-Fi,
Ethernet or 3G Cellular) over a websocket and the other is directly
connected to the server via a wired serial link. Since the wired
serial link has the least possible delay, we are comparing it with
the websocket link to compare the timings of both.

Now to synchronise the timings for two independent Arduinos,
we need to have a common clock. So, we have placed a Synchronis-
ing Arduino which is wired to the output ports of both the Arduinos.
Whenever either of the Arduino receives any server message, that
Arduino changes the state of its output PIN as high for a small
time duration of 10 milliseconds. �e synchronising Arduino is
constantly monitoring the states of the output pins of the 2 Arduino
through the wired link and every time the state is changed, the
local clock timing is noted by the Synchronising Arduino. When
the state of the other Arduino changes as well, the time di�erence
is calculated and printed to the Serial console of the synchronising
Arduino. �e delay calculated has a precision of 4 microseconds,
since that is the maximum precision o�ered by Arduino.

4.3 Tra�c Overhead
While designing a reliable algorithm, a certain overhead is incurred
in the form of data exchanged which leads to latency degradation.
Considering that IoT devices might not have high speed lines ded-
icated for transmission especially in cellular communication, it
becomes vital that the overhead occurred is a�ordable and useful
in decreasing net delay while increasing the message accuracy.

In the basic algorithm of just re-connection we do not have the
ping pong messages while in the advanced algorithm we have those

Table 2: Tra�c volume measured by the experiment.
RDPPA generated much larger tra�c volume than SRA did.
In 3G case, the WebSocket connection were kept available
with RDPPA, but it failed with SRA.

Test Network
(applied Algo-
rithm)

Messages
Sent

Messages
Dropped

Packets
(Total)

Bytes
(Total)

Ethernet (SRA) 50 0 51 2923

Ethernet
(RDPPA)

50 0 358 25023

Wi-Fi (SRA) 50 0 51 3570

Wi-Fi (RDPPA) 50 0 358 25023

3G (SRA) 50 49 51 130

3G (RDPPA) 50 0 730 61306

messages too. �is di�erence in the tra�c overhead is what wewant
to calculate along. �is is done by using ’tcpdump’ command and
then analysing the obtained �le using inbuilt �lters in Wireshark.
�e graphs for each of the networks have been presented below.

To take this into account we are sending the necessary peri-
odic connection stay awake messages with a additive increase /
multiplicative decrease algorithm.

4.4 Application of Earthquake Alarm
�e architecture for deploying a real-time earthquake alert system
is very similar to the one described in Fig. 2. Our prototype for
demonstration setup is described in Fig. 5. As seen in the Fig. 5, the
server is supposed to receive a noti�cation of an imminent earth-
quake via a government agency/website like Japan Meteorological
Agency. �e moment this alert is received by the server, the server
passes on this alert to the Arduino clients connected to it over cel-
lular network or Wi-Fi via WebSocket protocol. In the alert sent
from the server to the Arduino clients, the server speci�es what
hardware functions it wants the client to perform. �e Arduino
which is connected to devices like LEDs, speakers or even high
powered machines can then turn on LEDs or sound an alarm or
even cut o� power to the high powered machines. Such a system is
very much crucial to avoid accidents in case of an earthquake.

An Earthquake Early Warning System (EEW) have already been
implemented in Japan [14]. Such a system, tracks the P-wave which
are the preliminary tremors of the earthquake. Once these are
detected it estimates the incoming seismic intensities and the arrival
time of the S-wave or the principal motion of the earthquake. �is
intermediate time is very crucial to provide time for evacuation,
stopping elevators and even the high-speed bullet trains. All these
activities can be carried out by the system suggested in Fig. 2 using
the low-latency WebSocket IoT Network. For practical demo, we
carried out the blinking of an LED and stopping a motor using
RDPPA over 3G network.

Figure 4: Cumulative distribution function (CDF) of message delivery latency for (1) Ethernet, (2) Wi-Fi and (3) 3G. (* - For 3G,
there is no CDF for SRA, because of the failure of alert message delivery.)

Figure 5: Earthquake alarm system implementation. Alert
messages are delivered over the IoTWebSocket connections.
A LED light and a power motor are controlled.

5 DISCUSSION
In the current system we have not used the secure version of Web-
Socket Protocol. We have used ’ws’ protocol which is similar to
HTTP and not ’wss’ which is more similar to HTTPS. If used with
the secure version the delay measurement might change due to
security overhead. �is is because we are focusing only on the
communication parameters of the network and not the security.

Currently in our earthquake alert system, we are broadcasting
the same messages to all the clients from the server since they
are in a similar geographical area. But, if we consider a realistic
scenario for earthquake, the alert level will be di�erent in di�erent
regions. �is can be taken care of by transmi�ing the latitude and
longitude from the IoT devices. Since, these IoT devices will be
stationary when deployed, we can set the location inside the client
and it can be requested at any time. Or else, it may be acquired
by triangulation which will take up some more processing power.
Either ways, the location will be sent to the server on request and
the server according to its data and region classi�cation will send
the appropriate alerts to the IoT devices.

6 CONCLUSION
In this paper, we proposed a WebSocket connection management
algorithm for IoT, called reconnection with dynamic ping-pong
algorithm (RDPPA), assuming to build a real-time natural disaster
emergency alert system.

�e results of our experiments indicate that RDPPA performs
e�ciently on several network cases regarding to the amount of total
tra�c required and message delivery latency with keeping connec-
tions alive. We demonstrated that WebSocket is useful for critical
applications such as early-warning earthquake alert applications.

REFERENCES
[1] Narrowband IoT (NB-IoT), h�ps://www.u-blox.com/en/narrowband-iot-nb-iot
[2] Dae-Hyeok Mun, Minh Le Dinh, and Young-Woo Kwon. An Assessment of Internet

of �ings Protocols for Resource-Constrained Applications. In IEEE COMPSAC, 2016.
[3] Volker Herwig, Ren Fischer and Peter Braun. Assessment of REST and Websocket

in regards to their Energy Consumption for mobile Applications In IEEE IDAACS,
2015.

[4] A. Hashibuan, M. Musrdi, E. Y. Syamsuddin, and M. A. Rosidi. Design and Imple-
mentation of Modular Home Automation Based on Wireless Network, REST API, and
WebSocket. In IEEE ISPACS, 2015.

[5] L. Zhang and Xiaoxiao Shen. Research and Development of Real-time Monitoring
System Based on WebSocket Technology. In IEEE MEC, 2013.

[6] Z. B. Babovic, J. Protic, and V. Milutinovic.Web Performance Evaluation for Internet
of �ings Applications. IEEE Access, vol. 4, pages 6974 - 6992, 2016.

[7] C. Doukas, L. Capra, F. Antonelli, E. Jaupaj, A. Tamilin, and I. Carreras. Providing
Generic Support for IoT and M2M for Mobile Devices. In IEEE RIVF, 2015.

[8] Y. Tarutani, S. Murata, K. Matsuda, and M. Matsuoka. IEEE1888 over WebSocket
for communicating across a network boundary. In IEEE COMPSAC, 2016.

[9] G. C. Fernandez, E. S. Ruiz, M. C. Gil, and F. M. Perez. From RGB led laboratory to
servomoter control with websockets and IoT as educational tool. In IEEE REV, 2015.

[10] �e WebSocket Protocol., h�ps://tools.ietf.org/html/rfc6455
[11] Gorilla Websocket Library - A Go implementation of the Websocket protocol. Re-

trieved from h�ps://github.com/gorilla/websocket
[12] Brandenhall Arduino-Websocket Library - Simple Library that imple-

ments WebSocket client and server running on Arduino. Retrieved from
h�ps://github.com/brandenhall/Arduino-Websocket

[13] Tarm Serial Library - Go package to allow you to read and write from the serial
port as a stream of bytes. Retrieved from h�ps://github.com/tarm/serial

[14] Earthquake EarlyWarning System, h�p://www.jma.go.jp/jma/en/Activities/eew.html

	Abstract
	1 Introduction
	2 Related Work
	3 IoT WebSocket Connection Management
	3.1 Architecture
	3.2 RDPPA Server Side
	3.3 RDPPA Client Side

	4 Evaluation
	4.1 Experiment Setting
	4.2 Message Delivery Latency
	4.3 Traffic Overhead
	4.4 Application of Earthquake Alarm

	5 Discussion
	6 Conclusion
	References

