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1 INTRODUCTION
Analyzing network logs is one of the most useful methods for
network operators to understand network problems. With
these logs, we investigate detailed status and events for each
devices in network system. However, there are two issues to
analyze system logs. First, a large scale network generates
a huge amount and kind of log messages and it makes the
log analysis to be a hard task. Second, the important logs
related to system fault are usually hidden in the majority of
ones that report daily routine processes. Because of these
two issues, manual inspection is an unrealistic method and
automatic method is highly required. To overcome these is-
sues, there have been a lot of literature on automated system
log analysis [1],[3],[5]. One of e�cient log analysis methods
is to extract time series relations, especially causal inference.
Causal inference is a statistical technique to identify a causal
relationship between events. A popular causal inference algo-
rithm is called PC algorithm [8], [4] that is based on directed
acyclic graphs (DAG). Chen et al. [2] apply the PC algorithm
to a set of time series (e.g., RTT, TCP window size) for identi-
fying the source of network tra�c delay. Kobayashi et al. [7]
apply the PC algorithm to log time series and extract causal
relationships.
In this work, we focus on log burstiness, which is one of

the most popular time series characteristics, and its causality,
for the problem. A simple question arose in this work is how
the burstiness is meaningful and how pairs of burstiness rep-
resent a causal relationship. To detect burstiness, we rely on
a Kleinberg’s burst detection method [6] and conduct bursti-
ness analysis to single time series and burst cooccurrence
analysis to pairwise time series. To combine burst detection
and causal inference, we can �nd some meaningful pairs of
bursts for troubleshooting and these cases have relatively
high frequency of burst cooccurrence.
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2 DATASET AND PREPROCESSING
We use a set of network logs collected at SINET [9], which
is a Japanese research and education network. This network
connects over 800 academic organizations in Japan and con-
sists of eight core routers, 50 edge routers, and 100 layer-2
switches. This dataset is same with [7]. In this work, we
�rst generate log templates from dataset and classify them
into each templates. We call this group as an event. We use
the pre-processed dataset for removing frequent logs, by
applying Fourier analysis and linear regression analysis as
preprocessing, which is the same preprocessing with [7].

3 BURSTINESS AND CAUSALITY
3.1 Methodology
To detect burstiness of log messages, we employ the burst
detection algorithm by Kleinberg[6]. We convert raw log
messages to time series data and divide the dataset to one-day
long per event per device and detect burstiness in seconds,
for each events.
Next, we intend to extract meaningful burst event pairs

for troubleshooting from results of single burst detection us-
ing the cooccurrence of bursts and causality between events.
First, we analyze event cooccurrence related to burstiness us-
ing single burst detection results. Then, to analyze causality
of burstiness, we compare cooccurrence of bursts and causal
inference results.

Here, we de�ne Co-burst and burst cooccurrence ratio to
evaluate relevance between two bursts. Co-burst is a pair
of two co-occurred burst in two event time series. Co-burst
event pair is a pair of two events which include at least one co-
burst. We de�ne the cooccurrence of two bursts if they start
in the same 1-min bin. We calculate the cooccurrence ratio
of events A and B as Jaccard similarity coe�cient � (A,B) =
|A\B |
|A[B | . The higher � (A,B), the more frequent bursts occur at
the same time between event A and B. To calculate � (A,B),
we de�ne |A \ B | and |A [ B |. First, A and B are events that
are sets of time series data classi�ed by each log templates.
|A| or |B | means the total number of bursts detected in 456
days. |A \ B | is the total number of co-bursts between event
A and B in 456 days. |A [ B | is a disjunction of A and B.
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Figure 1: Jaccard coe�cient and causal co-burst event
pair distribution

Figure 2: Causal co-burst example

Co-burst Causal Co-burst
all 22,756 241 (1.06 %)

� (A,B) � 0.1 17,541 215 (1.23 %)
Table 1: The number of co-burst events and causal
ones

Use these de�nitions, we can calculate and compare burst
cooccurrence ratio.

3.2 Results
We calculate the burst cooccurrence ratio using single burst
detection result and then compare all the co-burst event
pairs to all the causal event pairs in causality DB obtained in
[7] (see also Table 1). The number of all the co-burst event
pairs is 22,756 and 2,776 causal event pairs are recorded in
the causality DB. If the same event pair of co-burst events
is recorded in causality DB, we consider that the co-burst
is not a coincident but a causal cooccurrence. We call such
event pair as a causal co-burst. With this comparison, we
�nd 241 causal co-burst pairs from all 22,756 co-burst pairs.
The distribution of the cooccurrence ratio is shown in Figure
1. The vertical line shows the cooccurrence ratio in log-scale
and the horizontal one the size of the union set of each event

pair, representing how often these bursts happen. Each point
shows a co-burst event pair. Red dots in Figure 1 illustrate
such causal co-burst events and gray dots illustrate not causal
but co-burst events.

Our results highlight two �ndings. First, we �nd a relation-
ship between causal co-burst events and burst coe�cient
ratio. In Figure 1, most part of red dots located at an up-
per part of the graphs and from Table 1; over 89% of causal
co-burst events have over 0.1 coe�cient ratio. Focus on hor-
izontal distribution of causal co-burst (red points), we can
see there are two clusters; a small burst disjunction cluster
(A [ B < 500) and large one (A [ B > 500). To investigate
the detail of the large one, it includes a lot of daily process
such as logs related to “show interface"" command. On the
contrary, the small cluster has many meaningful pairs of
burst. Thus, we conclude that causal co-burst event pairs
have relatively high coe�cient ratio. Second, we con�rm
the e�ectiveness to combine causal inference results and
burst detection. There are about 22K co-burst event pairs
by applying the burst detection. However, combining the
causal inference, only 1% of them remain. Therefore, 99% of
co-burst event pairs are coincident and we have to focus 1%
of them for extracting meaningful bursts. Combining causal
inference results is very e�ective to reduce trivial bursts.
Checking the details of log events, we �nd some useful

cases for network operation. A case is that outage of a L2
switch introduces enabling a bypass event, which means
change of network routes in order to avoid outage devices
and keep network availability. Figure 2 shows the cumulative
time series of two events. The horizontal line shows time and
the vertical one shows one-day cumulative time-series of an
event. Generally, system down and enabling bypass event are
not always appear at the same time because there are many
causes of the burst of the bypass enabling event. However,
to combine burstiness and causality, we can automatically
pinpoint when and what event causally burst with the bypass
enabling event.

4 CONCLUSION
We focused on burstiness and causality appeared in network
logmessages to extractmeaningful information from log data
for troubleshooting. First, we conduct single burst detection.
After that, we analyze pairwise time series burstiness with
single burst detection results. To combine burst detection
results and causal inference results, and we �nd some useful
cases for troubleshooting from remained burst results.
We are analyzing causality from a non-burst event to a

burst event (and vice versa) to highlight the root cause of
the burst (and to predict further events after the burst). We
plan to extend our results in this study to an automated log
analysis system.
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