Protocol-Independent FIB Architecture for
Network Overlays

ABSTRACT

We introduce a new forwarding information base ar-
chitecture into the stacked layering model for network
overlays. In recent data center networks, network over-
lay built upon tunneling protocols becomes an essential
technology for virtualized environments. However, the
tunneling stacks network layers twice in the host OS,
so that processing to transmit packets increases and
throughput will degrade. First, this paper shows the
measurement result of the degradation on a Linux ker-
nel, in which throughputs in 5 tunneling protocols de-
grade by over 30%. Then, we describe the proposed ar-
chitecture that enables the shortcut for the second pro-
tocol processing for network overlays. In the evaluation
with a dummy interface and a modified Intel 10-Gbps
NIC driver, transmitting throughput is improved in 5
tunneling protocols and the throughput of the Linux
kernel is approximately doubled in particular protocols.

Categories and Subject Descriptors

D.4.4 [Communications management]: Network com-
munication

Keywords
Network Stack; Network Overlay; Tunneling Protocol

1. INTRODUCTION

A significant benefit from using network overlays is
the separation of complex and ossified physical networks
and virtual networks. Logical topologies isolated from
physical networks can be changed agilely to respond to
various demands. This characteristic is essential for to-
day’s virtualized environments such as clouds and net-

ACM ISBN 978-1-4503-2138-9.
DOI: 10.1145/1235

the throughput rate to no-encap

IPIP GRE

GRETAP VXLAN NSH

Figure 1: The rate of transmitting throughput
via tunneling protocols compared with the nor-
mal transmission on Linux kernel 4.2.0.

work function virtualization (NFV). However, overlay-
ing networks requires additional protocol processing to
transmit packets. This can lead to overheads, especially
in host operating systems.

A typical end point of network overlays is software
network stack of host OS. In clouds, hypervisors con-
nect to overlays directly and virtual machines on the
hypervisors are accommodated in the overlaid inner net-
works. In NFV, software-based middleboxes as service
functions are connected by overlays [1]. Moreover, load
balancers sometimes utilize overlays for topology iso-
lation [2, 3]. Tunneling protocols that build network
overlays are implemented as pseudo network interface
drivers at the host OS. A pseudo interface becomes an
entry point to an overlay network. Packets sent to a
pseudo tunnel interface via a network stack are en-
capsulated by the interface and transmitted to underlay
physical networks via a network stack again.

This conventional OS network stack design of tunnel-
ing protocols involves overhead and degrades through-
put. To demonstrate the degradation at the OS, we
measured transmitting throughput with 5 tunneling pro-
tocols: IPIP, GRE, GRETAP (Ethernet over GRE),
VXLAN and NSH'! on Linux kernel version 4.2.0 with
Intel Core i7-3770K 3.50-GHz CPU and Intel X520 10-
Gbps NIC. The test traffic was a single UDP flow gen-
erated in kernel space. Figure 1 shows the result of

Thttps://github.com /upa/nshkmod was used for NSH.

this experiment. The x-axis refers to the rate of trans-
mitting throughput via each tunneling protocol to the
normal transmission (no encapsulation). As Figure 1
shows, using tunneling protocols in the host OS causes
over 30% to 43% throughput degradation.

In this study, 1) we show a fine-grained bottleneck

analysis of tunneling protocols on a Linux network stack.

The resulting analysis shows the required time for each
part of the network stack through tunneling protocols.
Based on the analysis, 2) we propose a new forward-
ing information base (FIB) architecture for tunneling
protocols. This architecture provides a shortcut for the
second network stack processing. Furthermore, the FIB
is protocol independent, so that the proposed architec-
ture can be adapted to existing and future tunneling
protocols. We implemented the proposed FIB using a
software dummy interface and an Intel 10-Gbps NIC
driver. The evaluation results show that the transmit-
ting throughput is improved in 5 tunneling protocols
and the kernel throughput is approximately doubled in
particular protocols.

2. CASE STUDY: LINUX TUNNEL IM-
PLEMENTATION

Although new tunneling protocols are being proposed
continuously for various purposes, all tunneling proto-
cols can be classified into three models by logical topol-
ogy type: point-to-point, multipoint-to-multipoint and
path-setup. Point-to-point is a classic model that inter-
connects two hosts via a virtual wire. Typical protocols
are IPIP and GRE. The multipoint-to-multipoint model
constructs full-mesh topology between multiple hosts.
A typical multipoint-to-multipoint protocol is VXLAN.
Finally, path-setup, which is used for NFV, constructs
virtual circuits on overlays. Network Service Header
(NSH) is a typical tunneling protocol of the path-setup
type. We consider that the bottleneck of transmission
(TX) path via tunneling protocols may change, based
on the topology models. Hence, we selected 5 tunneling
protocols from three topology models as measurement
targets: IPIP, GRE, GRETAP, VXLAN and NSH.

We measured the time required for each part of the
network stack processing to occur through 5 tunneling
protocols on a current Linux kernel. Figure 2 shows
the TX path of a Linux kernel and the experiment
overview. The TX path through a tunnel is classi-
fied into three parts. Inner-TX processes transmit-
ted packets after IP routing for layer-3 (e.g., fragmenta-
tion), layer-2 (e.g., ARP) and delivers them to a tunnel
interface via dev_queue_xmit () in the same manner as
physical interfaces. Pseudo Tunnel Interface pro-
cesses packets according to a tunneling protocol of this
interface such as destination lookup on an overlay and
headroom allocation for outer headers (Tunnel Pro-
cessing) and encapsulates the packets in the tunnel
header and outer IP header (Encapsulation). After
that, IP Routing runs for the outer destination IP ad-

Traffic Generator
Tunnel

ip_local_out_sk() pseudo interface

Network Stack

(Inner-TX) dev_queue_xmit()

Tunnel TX path Tunnel
- Processing

Encapsulation
(Adding headers)

Normal TX path Outer IP Routing

dev_queue_xmit()

ip_local_out_sk()

Network Stack

(Outer-TX)

Dummy interface
check timestamp
and drop packet

Figure 2: Overview of measurement of the TX
path of Linux kernel 4.2.0.

dev_queue_xmit()

dress. Finally, the encapsulated packets are delivered
to the network stack again via ip_local_out_sk().
Outer-TX processes the encapsulated packets for layer-
3 and layer-2 and delivers them to an outgoing interface
in the same manner as Inner-TX.

To measure the time required for these parts, we used
a modified Linux kernel. We added timestamp fields
to the packet buffer (struct sk_buff), and inserted
RDTSC instructions to the start and end of each part.
In this experiment, a packet generated by the traffic
generator went through each part and transit times were
stored in the timestamp fields of the packet buffer. The
dummy interface shown in Figure 2 saved the times-
tamp fields and dropped the packet immediately when
it received a packet. By using this method, we mea-
sured the time required for each part on the TX path
with 5 tunneling protocols. For this experiment, we
used a modified Linux kernel 4.2.0 with an Intel Core
i7-3770K 3.50-GHz CPU and test packets were 64-byte
UDP packets generated in kernel space.

Figure 3 shows the result of this experiment. The y-
axis refers to the time required as the number of CPU
clock cycles. The value of each part is the median of
the results of 300 runs for each protocol. The x-axis
refers to tunneling protocols; NoEncap means the nor-
mal TX (no encapsulation), so that there is only Inner-
TX on NoEncap. From the result, it can be seen that
additional processing time due to tunneling cannot be
ignored. In vxlan and NSH, the required CPU time to
transmit a packet is approximately doubled compared
with the normal TX.

In VXLAN and NSH, the required CPU time for IP
routing for the outer IP header (the red stack in Fig-
ure 3) is larger than for the other cases. This is ascrib-
able to differences of the topology models. IPIP, GRE
and GRETAP are point-to-point models, so that the
destination of the outer IP header is always the same.
Therefore, the routing cache is used instead of outer
IP routing. By contrast, in multipoint-to-multipoint

Outer TX
14000 [ouyter IP Routing
IP Encap

UDP Encap
Tunnel Encap
Tunnel Processing
Inner TX

12000

[

10000

8000

6000

CPU time (clock)

4000

2000

GRE GRETAP VXLAN NSH

NoEncap IPIP

Figure 3: Required CPU time for each part on
the Linux TX path via 5 tunneling protocols.

(VXLAN) or path-setup (NSH) models, the destination
IP address of the outer IP header is determined for each
transmitting packet by their lookup mechanisms. Thus,
IP routing cannot be omitted, so that the outer IP rout-
ing occupies over 16% of the TX path.

The reason why the Inner-TX of IPIP and GRE is
shorter than other protocols is that packet copy due
to headroom allocation for outer headers occurs in the
Tunnel Processing instead of the Inner-TX. Layer-2 over-
lay protocols allocate necessary headroom for the inner
Ethernet header, tunnel header, outer IP and Ethernet
headers together in the Inner-TX. On the other hand,
layer-3 overlay protocols allocate headroom in the Tun-
nel Processing because the Inner-TX does not need to
allocate headroom for the inner Ethernet header.

In addition to the CPU time measurement, we mea-
sured TX throughput of the Linux kernel. In this exper-
iment, the traffic generator kept generating test traffic
and the dummy interface kept dropping the packets.
Then, we counted the number of transmitted packets in
60 seconds. Figure 4 shows the result of the experiment.
Using tunneling protocols causes over 40% throughput
degradation on the Linux kernel. Moreover, the result
indicates that the current kernel network stack cannot
make full use of the link speed. With 1500-byte packets,
TX throughput of IPIP was 26 Gbps and VXLAN was
18.9 Gbps. These results are not sufficient for today’s
and future interface link speeds of 25 Gbps, 40 Gbps,
50 Gbps and 100 Gbps. As described, using tunneling
protocols on a host OS involves additional overhead and
highly degrades TX throughput.

3. APPROACH

In this study, we aim to shrink the gap of throughput
with/without the tunneling protocols described in Sec-

NoEncab
= 357 IPIP
S 30 GRE
G o5l GRETAP
= VXLAN
é_ 20 NSH
o 15|
3
2 10+t
£
5 L
0 — L L L
64 128 256 512 1024 1500

packet size (byte)

Figure 4: Measuring TX throughput of Linux
kernel 4.2.0 with a dummy interface.

IP Routing
Dst IP : src/dst MAC

IP
X
in
Overlay FIB lookup Ether o
ID : src/dst IP, src/dst MAC =
_ Overlay IP Routing
8o Dst IP : src/dst MAC
5L¢£ IP
g8eo2
54 ® o
o 9 1
nge Ethernet g
o =}
) o
Physical

Figure 5: Overlay FIB lookup omits second pro-
tocol processing for outer IP headers.

tion 2. Before describing the approach, protocol inde-
pendence has to be considered. New tunneling protocols
are being proposed on a daily basis. Thus, a method
specialized in a particular protocol will soon be out of
date. Moreover, such dedicated methods are difficult to
deploy in the real world.

Accordingly, we propose a protocol-independent for-
warding information base (FIB) architecture for net-
work overlays. This architecture omits the second pro-
tocol processing after encapsulation as shown in Fig-
ure 5. The original layer-3 FIB is an IP forwarding ta-
ble composed of entries of a destination prefix as a key
and gateway information such as a destination MAC
address. In contrast to the layer-3 FIB, the proposed
FIB, called overlay FIB, is composed of entries of some
sort of identifier as a key, a destination and parameters
for encapsulation. In the normal TX path, layer-3 and
layer-2 protocol processing run twice for inner and outer
headers of a packet. By using the overlay FIB, protocol
processing for outer headers is omitted.

3.1 Overlay Forwarding Information Base

This section describes the overlay FIB architecture
and its protocol independence. Even if protocols or
their topology models are different, the task of tunnel-
ing to transmit packets is the same: determining the
destination and encapsulating the packets. The overlay

Table 1: Identifiers embedded in packets can be specified by offset and length.

Protocol Offset | Length Identifier
IPIP, GRE none none (point-to-point)
VXLAN 16-byte | 48-bit Inner destination MAC address
NVGRE 8-byte | 48-bit Inner destination MAC address
MPLS over GRE 4-byte | 20-bit MPLS label
NSH over VXLAN-GPE | 20-byte | 32-bit | Service Path ID and Service Index

FIB corresponds to these two tasks.

Identifiers for determining the destination address of
the outer IP header are different for each tunneling
protocol. For instance, point-to-point protocols do not
have identifiers because the tunnel has only one desti-
nation. Typical multipoint-to-multipoint protocols use
the inner destination MAC address as an identifier to
determine a destination. NSH, a path-setup model,
determines a destination in accordance with the Ser-
vice Path ID and Service Index embedded in the NSH
header [4]. To handle these different lookup mechanisms
as a single logic process for protocol independence, we
define offset and length for the identifiers used in, for
example, the BPF [5] approach.

Although identifiers for lookups are different for each
tunneling protocol, they can be considered as the same
type of processing: checking a particular byte-string
embedded in a packet and determining a destination.
Identifiers are always embedded in packets; therefore,
identifiers can be specified by offset and length. The
parameter offset indicates the beginning of the identi-
fier and the length indicates the bit length of the iden-
tifier in the packets. Table 1 shows offset and length
values for major tunneling protocols. In the case of
VXLAN, offset is 16 bytes for UDP and VXLAN head-
ers and length is 48 bits for destination MAC address.
In the case of NSH over VXLAN-GPE, offset is 20 bytes
for UDP, VXLAN and NSH base headers and length
is 32 bits for Service Path ID and Service Index. In
this manner, protocol-specific lookup mechanisms can
be handled as a single operation on the overlay FIB.

An overlay FIB entry consists of a byte-string as an
identifier and a destination IP address. In addition to
the destination, necessary parameters for encapsulation
are also stored: source IP address, IP header param-
eters such as ToS and TTL, destination MAC address
(gateway router’s MAC address), source MAC address,
and an outgoing physical interface. When transmitting
a packet via a tunnel interface, the overlay FIB finds
an entry corresponding to the identifier embedded in
the packet. Thus, the packet is encapsulated in outer
IP and Ethernet headers with parameters stored in the
found entry from the FIB, and finally transmitted to a
physical interface. In this TX path, there is neither TP
routing nor protocol processing.

The overlay FIB is updated by entry operations and
lower layers. The layer-3 FIB is updated by layer-3
routing table operations (route add or delete) and lower

Normal TX Proposed TX
Application Application
Network Stack Network Stack OS Kernel
(Inner-TX) (Inner-TX)
Tunnel
Processing (few) Tunnel
Adding tunnel Processing ::::gé
and IP headers Adding only interface
tunnel header
Outer IP Routing
Network Stack
Outer-TX
Overlay FIB
NIC
Physical Interface | Hardware

l Physical Interface I

Figure 6: The normal and the proposed TX
pathes through network overlays in the host OS.

layers such as ARP table change (layer-2) and link down
or up (layer-1). The overlay FIB update is similar to
that in the layer-3 FIB except that the overlay FIB is
placed on layer-3. The overlay FIB is updated by entry
add or delete and in lower layers such as IP routing table
change (layer-3), ARP table change (layer-2) and link
down or up (layer-1). Altogether, update notifications
are yielded from lower layers to the overlay FIB layer.
Moreover, when an overlay FIB entry is added, update
notifications are yielded from the overlay FIB layer to
lower layers; then, the gateway’s IP and MAC addresses
are resolved and stored into the FIB entry.

3.2 Offloading Second Protocol Processing
to the Overlay FIB

The overlay FIB is placed between tunnel pseudo
interfaces and outgoing physical interfaces in the TX
path. Figure 6 shows the normal TX path and the pro-
posed path with the overlay FIB on a Linux kernel. In
the normal TX path, the tunnel pseudo interface de-
termines an outer destination IP address of a packet,
encapsulates the packet in tunnel and IP headers, runs
IP routing for the outer destination IP address and fi-
nally delivers the encapsulated packet to the network
stack again.

In the proposed TX path, determination of the desti-
nation and encapsulation for the outer IP and Ethernet
headers are offloaded from the tunnel pseudo interface
to the overlay FIB. Consequently, IP routing for the
outer IP header is omitted. Tunnel pseudo interfaces
only encapsulate packets in the tunnel header and de-
liver the packets to the overlay FIB. When the overlay
FIB receives packets, the FIB finds entries for the pack-
ets based on the lookup mechanism described in Sec-
tion 3.1. Then the packets are encapsulated in outer
IP and Ethernet headers and delivered to the physical
outgoing interface in accordance with the FIB entries.
As a result, the overlay FIB architecture reduces the
CPU time needed to transmit a packet by omitting IP
routing and the second protocol processing for the outer
IP header. In addition to outer IP and Ethernet header
encapsulation, UDP encapsulation can also be offloaded
to the overlay FIB.

The overlay FIB can be implemented in both soft-
ware and hardware. As hardware, it is implemented
in NICs. NICs have the FIB table and a configuration
API that has functions to set offset and length, add
and delete an entry composed of an identifier and corre-
sponding parameters. This API is similar to switchdev
APIT [6] introduced to Linux kernel version 3.19. The
switchdev provides kernel with hardware independent
configuration API to notify layer-2 and layer-3 FIB en-
tries to NIC. The overlay FIB entries can be notified
from kernel to NIC in a similar way. Moreover, pro-
posed architecture can be implemented in hardware by
using various technique like FPGA [7], hardware pro-
gramming [8, 9] and dedicated ASIC certainly.

4. EVALUATION

The proposed overlay FIB architecture provides a
shortcut for second protocol processing on the TX path
via tunneling protocols. By using the architecture, TX
throughput with tunneling protocols is improved. In
this section, we investigate throughput improvement
due to the proposed architecture from two aspects: 1)
measuring the required CPU time to transmit a packet
and 2) actual throughput. For this evaluation, we mod-
ified IPIP, GRE, GRETAP, VXLAN and NSH drivers
to support the overlay FIB. All modifications for drivers
are less than a few dozen lines of code.

Source codes for all experiments described in this pa-
per are available at https://github.com/xxx/xxx.

4.1 Measuring CPU Time on the TX Path

First, we measured the CPU time required for each
part on the TX path with the overlay FIB in the same
manner as for the experiment discussed in Section 2.
In this experiment, we assumed that the overlay FIB
was completely implemented in the NIC hardware; thus,
lookup identifier, second protocol processing, outer UDP,
IP and Ethernet header encapsulation are omitted from
the TX path of the kernel. Tunnel pseudo interfaces

Outer TX

Outer IP Routing
IP Encap

UDP Encap
12000 ¢ Tunnel Encap
Tunnel Processing

Inner TX
10000 | 8

14000 |

8000 -

CPU time (clock)

6000

4000 r

2000

NoEncap IPIP GRE GRETAP VXLAN NSH

Figure 7: Outer UDP, IP encapsulation and IP
routing are omitted from the TX path compared
with the normal TX path shown in Figure 3.

delivered packets to the dummy interface immediately
after encapsulation. We experimented with modified
Linux kernel version 4.2.0 and an Intel Core i7-3770K
3.50-GHz CPU machine.

Figure 7 shows the CPU time required to send a
packet when the FIB is implemented in NICs. In Fig-
ure 7, Outer-TX means the time required from the end
of tunnel interface to the start of dummy interface pro-
cessing. TP routing, IP and UDP encapsulation are com-
pletely removed from TX paths compared with Figure 3.
As a result, the CPU time required to send a packet in
the kernel is reduced in all tunneling protocols.

In addition, IPIP with the FIB is shorter than NoEn-
cap. That is because of the packet copy for headroom al-
location. In the normal TX path of IPIP, headroom for
outer IP and Ethernet headers is allocated in the Tunnel
Processing as described in Section 2. By contrast, al-
locating headroom is not needed if outer encapsulation
is offloaded to NIC hardware by the proposed method.
As a result, CPU time for IPIP becomes shorter than
for no encapsulation, which requires headroom alloca-
tion for the Ethernet header in the Inner-TX. On the
other hand, time for the Tunnel Processing of GRE,
which uses layer-3 tunneling, does not decrease, because
headroom allocation is still needed for the GRE header.

In VXLAN, the Tunnel Processing is almost removed.
When using the FIB, protocol processing of VXLAN
only involves adding a VXLAN header to a packet.
Lookup VXLAN FDB, determining destination IP ad-
dress, encapsulating VXLAN and UDP headers are re-
moved from the Tunnel Processing. As a result, the
CPU time required to transmit a packet via the VXLAN
tunnel with the FIB has decreased by 47% compared
with the normal VXLAN.

Table 2: Measurement result of 5 protocols with/without the overlay FIB.

IPIP GRE GRETAP VXLAN NSH

packet size (Byte) 64 1500 64 1500 64 1500 64 1500 64 1500

Normal TX (Gbps) 1.05 25.74 1.00 24.36 098 21.62 0.74 1787 0.79 19.14

dummy TX with overlay FIB (Gbps) | 2.20 51.94 1.58 31.86 1.28 27.82 143 31.10 1.36 29.48
Throughput rate (%) 210 202 158 131 131 129 193 174 172 154

packet size (Byte) 64 1024 64 1024 64 1024 64 1024 64 1024

Normal TX (Gbps) 0.72 958 064 955 0.69 943 058 823 0.62 8.71

ixgbe TX with overlay FIB (Gbps) | 0.84 9.58 0.86 9.55 0.81 9.73 085 932 080 9.13
Throughput rate (%) 117 100 132 100 117 103 147 113 129 105

4.2 Measuring Throughput

We next evaluated throughput using the dummy in-
terface and the modified ixgbe driver, which is the Intel
10-Gbps NIC driver. With the dummy interface, trans-
mitted packets were dropped immediately the packets
were delivered to the dummy interface; this is the same
as for the experiment shown in Figure 4. Altogether, the
throughput of the dummy interface means the through-
put of the Linux kernel itself. In addition, we imple-
mented the overlay FIB as software into an ixgbe driver.
With the modified ixgbe driver, packets delivered to an
ixgbe interface were encapsulated in outer IP and Eth-
ernet headers in accordance with the overlay FIB in the
device driver. Then, the packets were transmitted to
a wire via X520 NIC. We measured throughput of the
modified ixgbe at an receiver machine connected to the
NIC. For this experiment, we used the same machine as
that used in the experiment described in Section 4.1.

Table 2 shows transmitting throughput using the dummy

interface and the modified ixgbe driver. In all cases, the
proposed method improves TX throughput. Through-
puts of the dummy interface with IPIP and VXLAN
with 64-byte packets are also approximately doubled
as, expected from the result of the experiment about
CPU time in Section 4.1 On the other hand, the over-
lay FIB software implementation also improves actual
throughput to the wire when using the ixgbe driver in
all tunneling protocols. When it was implemented in
the NIC hardware, the throughput of the ixgbe was im-
proved at the same rate as for the dummy interface.

5. DISCUSSION

Other identifiers: The proposed method assumes
that the identifier is embedded in the packet and is just
a byte-string. This assumption is correct for MAC ad-
dresses or labels; however, it does not work for identi-
fiers that have some sort of semantics. Locator Iden-
tifier Separation Protocol (LISP) [10] utilizes the inner
destination IP address as the identifier to determine a
destination on a LISP overlay network. Thus, the over-
lay FIB has to be capable of the longest prefix match
in order to support LISP.

Other bottlenecks on the TX path: Many bot-

tlenecks on the TX path are well known. For instance,
socket API, system call overhead and per-packet pro-
cessing have been mentioned for high-speed packet I/0
approaches [11, 12, 13, 14]. Meanwhile, network pro-
tocol processing never disappears from host OS. This
means, no matter how fast the network stack is, proto-
col processing becomes the bottleneck on the TX path.
In the Arrakis operating system [15], which has a very
optimized network stack, network protocol processing
occupies 44.7% of its TX path. When protocol pro-
cessing becomes a bottleneck as it does in Arrakis, the
current design of overlays where packets go through the
network stack twice involves serious overheads. There-
fore, the proposed method, which avoids the second pro-
tocol processing, can achieve throughput improvement
even if other bottlenecks are also relieved.

Hardware offloading techniques: The proposed
method can coexist with existing NIC offloading tech-
niques. For example, the generic segmentation offload
(GSO) delivers large (over 60-kbyte) packets to NICs.
Then, NICs divide large packets into small packets cor-
responding to MTU size. GSO reduces the number of
packets that are handled by the network stack, so that
it achieves TX throughput improvement. By applying
the overlay FIB before the GSO to NICs, large packets
are encapsulated in outer IP and Ethernet headers and
then divided into small packets. In addition, UDP tun-
nel offload [16, 17], checksum offload can also coexist.

6. CONCLUSION

In this paper, we have investigated the bottleneck of
tunneling protocols in the Linux kernel network stack.
Based on the investigation, we have proposed a new FIB
architecture for network overlays. The overlay FIB pro-
vides a shortcut for second protocol processing of tun-
neling protocols. Moreover, this architecture is protocol
independent, so that it can be adapted to existing and
future tunneling protocols. We demonstrated that our
proposed method could improve transmitting through-
put with 5 protocols, and the kernel throughput was
approximately doubled in ITPTP and VXLAN. We plan
to implement the architecture in a FPGA card with 10-
Gbps NIC. Finally, we aim to evaluate and discuss the
architecture in more detail in the future.

7.
1]

2]

REFERENCES

J. Halpern and C. Pignataro. Service function
chaining (sfc) architecture. RFC 7665, RFC
Editor, October 2015.

Daniel E. Eisenbud, Cheng Yi, Carlo Contavalli,
Cody Smith, Roman Kononov, Eric
Mann-Hielscher, Ardas Cilingiroglu, Bin Cheyney,

Wentao Shang, and Jinnah Dylan Hosein. Maglev:

A fast and reliable software network load
balancer. In 18th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI 16), pages 523-535, Santa Clara, CA,
March 2016. USENIX Association.

Albert Greenberg, James R. Hamilton, Navendu
Jain, Srikanth Kandula, Changhoon Kim,
Parantap Lahiri, David A. Maltz, Parveen Patel,
and Sudipta Sengupta. VI2: A scalable and
flexible data center network. Commun. ACM,
54(3):95-104, March 2011.

Paul Quinn and Uri Elzur. Network service
header. Internet-Draft draft-ietf-sfc-nsh-04, IETF
Secretariat, March 2016. http://www.ietf.org/
internet-drafts/draft-ietf-sfc-nsh-04.txt.

Steven McCanne and Van Jacobson. The bsd
packet filter: A new architecture for user-level
packet capture. In Proceedings of the USENIX
Winter 1993 Conference, USENIX’93, pages 2-2,
Berkeley, CA, USA, 1993. USENIX Association.
Jiri Priko. Hadware switches - the open-source
approach. Technical report, Netdev 0.1, The
Technical Conference on Linux Networking, 2015.
Jad Naous, Glen Gibb, Sara Bolouki, and Nick
McKeown. Netfpga: Reusable router architecture
for experimental research. In Proceedings of the
ACM Workshop on Programmable Routers for
Exztensible Services of Tomorrow, PRESTO ’08,
pages 1-7, New York, NY, USA, 2008. ACM.
Pat Bosshart, Dan Daly, Glen Gibb, Martin
Izzard, Nick McKeown, Jennifer Rexford, Cole
Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: Programming
protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., 44(3):87-95,

July 2014.

Antoine Kaufmann, SImon Peter, Naveen Kr.
Sharma, Thomas Anderson, and Arvind
Krishnamurthy. High performance packet
processing with flexnic. In Proceedings of the
Twenty-First International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’16, pages
67-81, New York, NY, USA, 2016. ACM.

D. Farinacci, V. Fuller, D. Meyer, and D. Lewis.
The locator/id separation protocol (lisp). RFC
6830, RFC Editor, January 2013.
http://www.rfc-editor.org/rfc/rfc6830.txt.

Luigi Rizzo and Matteo Landi. Netmap: Memory
mapped access to network devices. In Proceedings

of the ACM SIGCOMM 2011 Conference,
SIGCOMM ’11, pages 422-423, New York, NY,
USA, 2011. ACM.

Intel. Intel data plane development kit.
http://dpdk.org/.

Kenichi Yasukata, Michio Honda, Douglas Santry,
and Lars Eggert. Stackmap: Low-latency
networking with the os stack and dedicated nics.
In 2016 USENIX Annual Technical Conference
(USENIX ATC 16), Denver, CO, June 2016.
USENIX Association.

The fast data project. https://fd.io/.

Simon Peter, Jialin Li, Irene Zhang, Dan R. K.
Ports, Doug Woos, Arvind Krishnamurthy,
Thomas Anderson, and Timothy Roscoe. Arrakis:
The operating system is the control plane. In 11th
USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14), pages
1-16, Broomfield, CO, October 2014. USENIX
Association.

Intel. Intel ethernet controller 10 gigabit and 40
gigabit x1710 family. http://www.intel.com/
content/www /us/en/embedded /products/
networking/ethernet-controller-x1710-family.html.
Mellanox Technologies. Mellanox connectx-3 pro
product brief.
http://www.mellanox.com/related-docs/prod_
adapter_cards/PB_ConnectX-3_Pro_Card_EN.pdf.

