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Abstract

Various overlay networks have been proposed and developed to increase flex-
ibility on networks to address issues of the IP network. However, the existing
overlay networks have two problems: 1) performance degradation due to full-
mesh tunneling, 2) increasing of development cost due to tightly coupled with
control and data plane. To solve the problems, we introduced a new abstraction
layer for overlay networks in the existing network layering model. Based on the
architecture, we designed and implemented a protocol stack, called ovstack,
as a common data plane for overlay networks. In this paper, we describe con-
trol plane systems to construct overlay networks with dynamic routing protocol
on ovstack. We evaluate the performance of overlays including ovstack, and
topologies that are built by the control plane systems. The results of perfor-
mance evaluation shows that delay of packet forwarding is decreased 12 % and
jitter is 8 % lower than an existing overlay. Then, our evaluations confirm that
the ovstack can contribute to construction of overlay networks specified each
requirement on the current networks.
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1. Introduction

Various applications communicate via an IP network. Every application has
its own requirements on networks, such as bandwidth, latency, stability, avail-
ability, and operability. For example, e-commerce services require low latency
networks [1], and voice communication systems require networks to be low jit-
ter [2]. Furthermore, in Infrastructure as a Service (IaaS) model cloud environ-
ments, multi-tenancy for separating networks for each user and prefix mobility
are required. On the other hand, as problems of IP, decoupling location and
identification, multi-homing, mobility, simplified renumbering, modularity, and
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routing quality are remarked in RFC6227 [3]. Due to these problems, exist-
ing networks constructed by IP and ethernet lack flexibility to satisfy various
requirements.

To increase the flexibility of networks, overlay networks have been proposed
and developed [4, 5, 6, 7, 8]. Some functions achieved by overlays are also uti-
lized for network virtualization and Software Defined Network (SDN). Overlay
technologies construct their own networks over the IP network by encapsulat-
ing packets with their protocol headers in IP datagram. This encapsulation
enables to add network functionalities to the overlay network corresponding
to the requirements of an application. For example, Virtual eXtensible LAN
(VXLAN) [4], an ethernet over IP overlay technique, achieves layer 2 multi-
tenancy and is utilized as one of transports on SDN environments. On the
other hands, Locator/ID Separation Protocol (LISP) [5] that is IP over IP over-
lay achieves prefix mobility and multi-homing, and some other overlays achieve
multicast communication [7, 8].

However, the architecture of existing overlay technologies has two problems.
The first problem is that the topology of existing overlays is essentially a full-
mesh tunneling topology. Hence, a path between two overlay nodes follows the
path of IP layer. In consequence, it is not possible to build routing overlays with-
out being tied to the routing table of IP layer, and then it causes performance
degradation. Second problem is tightly coupled with control plane and data
plane. Since existing overlay technologies are specialized in each upper-layer
application, the system architectures of control and data plane are interdepen-
dent. Thus, overlay networks that are built by each overlay technology are
completely independent, which causes complication of network operations and
increases of development costs: when developing a new overlay technology, it is
necessary to design and develop both of control and data plane.

In our previous work [9], we introduced a new abstraction layer for overlay
networks in the network layering model. And we designed and implemented
a protocol stack of common data plane for overlay networks. The proposed
protocol stack, called ovstack, offers common functions of data plane of overlays
including routing table and forwarding packets in overlay layer. In this paper, we
extend the work with control plane design, implementation and evaluation. By
investigating control plane of ovstack, we show that ovstack helps construction
of overlay networks for requirements on the current networks.

Our contributions of this paper include:

• Introducing a new abstraction layer for various overlay networks in the
network layering model.

• The design and implementation of ovstack, a framework that provides a
protocol stack of data plane for the abstraction layer in Linux kernel.

• The design and implementation of two control planes as routing protocols
for ovstack overlays, and its evaluation.
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2. Existing Overlay Models

In this section, we summarize characteristics of existing overlays, and clarify
problems of the existing overlay.

2.1. Locator/ID Separation Protocol

Locator/ID Separation Protocol (LISP) is an IP over IP overlay network
architecture and protocol. LISP isolates two aspects of the IP address, identifier
and locator. By introducing this isolation, LISP enables prefix mobility and
multi-homing. In LISP, an IP prefix is called Edge ID (EID), and a LISP router
that accommodates EIDs is called Ingress or Egress Tunnel Router (xTR). xTRs
of a LISP network manages map table that is constructed from entries of EID
and the Routing Locator (RLOC) that is the IP address of xTR. xTR forwards
IP datagram with IP encapsulation to other xTR in accordance with the map
table.

Providing multiple xTRs for an EID enables multi-homing of the EID prefix.
In IP layer, it is necessary to have inter-AS connectivity through eBGP to realize
multi-homing for a prefix. In contrast, LISP can achieve multi-homing for EIDs
easily by multiple xTRs. Moreover, the relation between EID and RLOC does
not have particular semantics like IP netmask. Thus arbitrary EIDs can be
accommodated by arbitrary xTRs. It enables that prefix mobility in a LISP
overlay network.

The LISP map protocol is defined as a control plane of the LISP overlay
network. The control plane of LISP is constructed from LISP Alternative Logi-
cal Topology (LISP- ALT) based on BGP [9]. xTRs constructs routing table of
the overlay network from exchanging map table information using LISP-ALT.
Thus, xTRs are able to route and forward packets in accordance with overlay
routing table.

2.2. Virtual eXtensible LAN

Virtual eXtensible LAN (VXLAN) provides ethernet emulation over IP net-
work. In VXLAN, new 24 bit identifier is added into VXLAN header when
the ethernet frame is encapsulated. By adding this identifier that is named
VXLAN Network Identifier (VNI), VXLAN is able to isolate enough number
of network segments. The control plane of VXLAN uses unicast frame that
is encapsulated with IP unicast, and unknown unicast, broadcast and multi-
cast frames are encapsulated with IP multicast. Because it uses IP multicast,
VXLAN nodes (VTEP) can join the VXLAN overlay network without a par-
ticular control plane protocol. Thus, the header format of VXLAN is simple to
include only some flags and VNI.

The VTEP manages Forwarding Data Base (FDB) that is constructed from
pairs of MAC address and IP address of VTEP. This procedure is described be-
low: when a VTEP receives an encapsulated packet from the overlay, it registers
a pair of source MAC address of inner ethernet header and source IP address
of outer IP header. Thereby, VXLAN constructs FDB for the overlay network
with flooding to IP multicast address and source MAC and IP address snooping.

3



2.3. Resilient Overlay Network

Resilient Overlay Network (RON) [6] is an overlay network that aims to
improve network performance such as throughput and delay by utilizing the
multihop overlay routing. RON nodes have unique identifiers for each node in
overlay network, and construct routing table using the node id to realize the
multihop overlay routing. In LISP and VXLAN, the path of encapsulated pack-
ets is end-to-end between overlay nodes in accordance with IP routing table. By
contrast, in RON, relaying other nodes in the overlay network enables selection
of better path between nodes without being tied to the routing table of IP layer.

Existing overlays such as LISP and VXLAN transmit packets through end-
to-end path in IP layer. On the other hand, routing overlays such as RON and
Scribe [7] that enables multicast routing in overlay network, constructs routing
table using an identifier on the overlay network apart from IP routing table. By
selecting better quality paths between overlay nodes, routing overlays achieves
performance improvement of network. To achieve the routing overlays, the RON
node adds destination and source node identifiers to encapsulation header.

2.4. P2P Network

Peer-to-Peer Network (P2P) is also one of overlay networks. In P2P net-
works, client nodes or proxy servers construct multihop overlay networks with
a variety of topologies on the Internet. By transporting application data over
overlay networks through relay nodes, P2P networks achieve many applications
such as file sharing and video or voice streaming, etc. Furthermore, in research
community, many approaches to optimize overlay topologies are proposed to
address performance issues of P2P networks.

On the other hand, identifier schemes and data transport architectures of
various P2P techniques are optimized for target applications. For example,
bittorrent [10] is the one of most popular file sharing P2P applications. Its
messaging protocol and node identifier are specialized to find out objective files
and share them efficiently. SplitStream [11] is proposed to obtain multicasting
high-bandwidth content in a P2P network. It constructs a tree-based overlay
topology optimized for grouping nodes with the flat node identifier space us-
ing Scribe algorithm [7]. As just described, components of P2P networks are
specialized for their target applications.

2.5. Problem Definition

To satisfy various requirements, there are many overlay technologies: each
overlay achieves each requirements such as multi-homing, mobility, multi-tenancy
by encapsulation, performance improvement, and multicast communication by
routing overlays. However, there are two problems by individual technologies
are dedicated to specific requirements.
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2.5.1. Full-mesh Tunneling Topology

First problem is, the topology of most existing overlay technologies for packet
transport is essentially full-mesh tunneling topology that causes degradation of
network performance. Overlay routing with relay nodes like RON and P2P
networks achieves performance improvement of throughput and multicast com-
munication. However, in existing overlays like IP tunneling, LISP and VXLAN,
a path between two overlay nodes is directly connected. If routing overlays are
realized by tunneling overlay technologies, the overhead of re-encapsulation oc-
curs in relay nodes: relay nodes decapsulate packets from a overlay link at first,
route on basis of inner packet data, and encapsulate packets again to transmit.

In VXLAN, a VTEP transmits ethernet frames with IP encapsulation to an
IP address that is contained in FDB. Thus, paths between VTEPs are same
as paths of IP layer: the overlay topology between more than two VTEPs is
same as full-mesh tunneling topology. LISP also constructs the same overlay
topology. The xTR finds a destination locator address from map table using a
destination IP address of received IP packets from edge networks, and trans-
mits encapsulated packets to the destination xTR via an IP network. Because
existing overlay technologies do not have any unique node identifier on overlay
networks, they cannot build the routing overlays without being tied to the IP
routing table.

The cause of the problem is that it is not intended that these technologies
have the purpose of routing in the overlay network. For that reason, headers
of LISP and VXLAN do not contain node identifier on each overlay network.
Instead of overlay routing, they achieves various functions such as address mo-
bility and multi-tenancy without complex header formats and control planes.
On the other hand, to respond to requirements about the network performance,
node identifier and multihop overlay routing like RON are needed.

2.5.2. Tightly Coupled Control Plane and Data Plane

Second problem is, existing overlays has tightly coupled control plane and
data plane. LISP utilizes map protocols as control plane, and data plane (e.g.,
header formats and routing table) has particular formats specified to LISP map
protocol, therefore, the control plane and data plane of LISP cannot be utilized
from other overlay network technologies, vice versa. Other existing overlay tech-
nologies are similar to that. The header format of RON has some specific fields
such as policy tag and flow identifier for the RON control plane. Moreover,
many P2P systems have been proposed many techniques to optimize overlay
networks for performances improvement. However, control planes (i.e. man-
agement protocols) and data plane (i.e. addressing and data transport) are
completely united.

As described above, existing overlay networks have mutual dependence of
control plane and data plane to achieve each function. Consequently, all of
overlay networks built with each technology are completely isolated, and both
planes do not have transparency. They cause complication of network operations
and increase of development cost. When creating a new overlay technology,
developers have to design and implement both of control and data plane.
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3. Architecture

Existing tunneling protocols and their overlay topologies are designed and
proposed for each specific purpose. LISP enables prefix mobility and multi-
homing by locator/ID separation architecture, VXLAN is designed for segment
multiplexing by introducing 24 bit VNI as a new network identifier, and RON
is designed for performance improvement by using multihop overlay routing.
Thereby, different control or data plane systems can not be used in combination
with other planes for various purposes.

In order to solve the problems, we propose an abstraction layer for overlay
networks in this paper. As shown in Figure 1, existing overlays are designed
specifically for each upper-layer application and requirement, thus it causes iso-
lation of overlay networks and partial lack of features. In proposed architecture,
the overlay network is abstracted as a function of network into the network lay-
ering model. Developers can construct overlay networks for their requirement
on new abstraction layer of overlay.

We proposed a protocol stack called ovstack for common data plane for over-
lay networks [9]. ovstack forms the data plane of the overlay layer. Developers
can create their control plane systems to construct overlay networks with ovs-
tack. Figure 2 depicts the overview of relationship of control plane and data
plane. ovstack provides common functions to achieve overlay networks: node
identifier, routing tables, packet encapsulation, and overlay routing and forward-
ing. Encapsulated packets are routed without decapsulation in accordance with
overlay routing table and node identifier embedded in encapsulation header.
When packets are forwarded on overlay layer, outer IP header is swapped to
next-hop overlay node like IP routing swaps outer Ethernet header. Control
planes just add and delete entries to routing tables, and set node identifier in-
formation. Moreover, multiple routing tables can be created in ovstack, so that
multiple control planes for each requirement are able to use different routing
tables to separate routing information and identifier space at a data plane.

Introducing new identifier space for overlay layer, multihop overlay routing
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Figure 1: Abstraction layer for Overlay Networks.
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Figure 2: Overview of data plane and control plane of ovstack.

is achieved. Therefore, performance improvement and multicast communica-
tion can be realized, as traditional routing overlay (RON) does. On the other
hand, control plane, data plane, and upper-layer applications are completely
isolated. By providing interfaces between both control and data planes without
dependence on upper-layer application systems, transparency of control plane
is realized. This isolation helps reduce to development cost, that is one control
plane for particular metric such as delay or throughput can be shared for plural
upper-layer applications.

The abstraction of overlay networks as the overlay layer eliminates dependen-
cies between control and data planes. It allows us to switch overlay topologies
by only exchanging control plane systems. Moreover, by introducing a distin-
guisher for upper layer applications as a functionality of overlay layer, different
topologies for each application requirements such as delay or bandwidth coex-
ist on an overlay network without data plane replacement. Therefore, it helps
that reducing development and deployment cost for new overlay topologies for
various purposes.

4. Design of Data Plane and Control Plane

In this section, we describe the detail of data plane and control plane of
ovstack. The design considers two problems raised in Section 2.5, 1) avoiding
full-mesh tunneling topology by introducing node identifier and routing on over-
lay layer (Section 4.1), and 2) defining a common interface between control and
data planes so that both planes are isolated (Section 4.2).

4.1. Data Plane

In ovstack, a node ID is 32 bit identifier in flat space. It is meaning that an
ID does not have special semantics as netmask, which is evaluated by longest
match policy in IP routing table. Using flat space for node identifier avoids
ID and locator binding related problems like IP. Moreover, it has a possibility
of introducing Distributed Hash Table (DHT) based algorithms [12, 13] for
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Figure 3: Header format of ovstack.

construction of overlays so that techniques of P2P networks are able to be
introduced on ovstack.

ovstack contains routing tables for multihop routing in overlay layer. This
routing table is constructed from two entities, Routing Information Base (RIB)
and Locator Information Base (LIB). RIB consists of entries of destination ID
and next hop node IDs. Overlay routing of ovstack is processed based on this
RIB. Arbitrary destination ID can contain multiple next hop node IDs. When
a destination has multiple next hop, a packet towards the destination is copied
and transmitted to all next hops, that realizes multicast communication in an
overlay network. LIB consists of entries of a node ID, IP addresses as locator
of the node, and a locator weight. When packets are routed and forwarded on
overlay layer, IP is utilized as actual transmission toward next hop. LIB is a
map table that is used to look up an actual IP address of next hop. Moreover,
LIB allows multiple locator IP addresses for one node, and weight based load
balancing like LISP does.

ovstack separates identifier as ovstack node ID and locator as underlay IP
address like LISP does. It enables that overlay routing table is isolated from
underlay IP routing table. Underlay IP network is treated as just transport
between ovstack nodes, then overlay routing tables based on ovstack node ID
can construct various overlay topologies which are not bound to underlay IP
networks.

4.1.1. ovstack Routing Layer

We describe routing table look up and forwarding decision processes of ovs-
tack. Figure 3 shows the header format of ovstack. ovstack encapsulates pack-
ets with IP, UDP, and ovstack header. Functions and roles of each field are
described below.

• Application Field
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Application field represents the type of encapsulated upper-layer applica-
tion. When packets are routed on overlay layer, ovstack uses this field to
distinguish an ovstack overlay network that packets belong to, and decides
a routing table to look up.

• TTL (Time To Live)

When ovstack node routes encapsulated packet on overlay layer, outer IP
header is swapped toward next ovstack node, and IP TTL of outer IP
header is reset. Thus, when overlay routing tables comprise directed cycle
graph due to miss-configuration or control plane failure, packets caught in
the routing loop do not disappear. To avoid this, we introduce TTL field
into ovstack header.

TTL field represents the remained hop count that packets are forwarded.
ovstack nodes decrease a hop count when forwarding a packet. And if the
field is 0, the packet is dropped. Since the hop count between hosts on
overlay network is likely less than the Internet, the default hop count for
ovstack should be less than 64.

• Virtual Network Identifier

Virtual Network Identifier (VNI) field is 24 bit identifier for multi-tenancy.
Applications can isolate networks on an ovstack overlay by utilizing this
VNI field. An application driver fills the VNI field when encapsulating a
packet. Thus, receiver nodes can distinguish the network that the packet
belongs to.

Multi-tenancy and network isolation on both data center and Wide Area
Network (WAN) environments are needed. Although VLAN is used for
network isolation most practically, 12 bit VLAN ID is not enough for
recent use cases such as large scale IaaS cloud [4]. Therefore, VXLAN
introduces 24 bit VNI field for network isolation on data centers, and it
is also reused into wide area VPN uses as a data plane for E-VPN [14].
Hence, we introduce 24 bit VNI field into ovstack header for multi-tenancy
on large scale environments.

As an example, how to separate layer 2 networks for ethernet over ovstack
is described in Section 4.1.2.

• Hash

Hash field is utilized to decide a locator address of a next hop node when
the next hop node has multiple locators. If a node has multiple locators,
traffic is balanced for locators on IP layer. In this case, a flow that has to
be prevented packet reordering can be distinguished by only upper layer
application. Then, by filling the hash field associated with a flow of the
application distinguished, reordering caused by load balancing on the layer
is avoided.

The process flow of a packet by ovstack routing layer is shown at Figure 4.
First of all, application drivers that communicate upper-layer applications and
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the ovstack routing layer have to be prepared for each application. The data
path to be transferred is decided by only upper-layer application. It is similar
to case of IP. An application driver encapsulates data with an ovstack header
filled destination ID, source ID, application number and hash.
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Data	  to	  Foo	

ovstack	  header	  
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Figure 4: Process flow of a packet form an application driver to an overlay network through
the ovstack routing layer.

ovstack routing layer receives encapsulated packets from application drivers.
Then, next hop entries are found from routing table corresponding to application
number of the packet: ovstack looks up a next hop from RIB at first, and look
up the locator address of the next hop node from LIB. If the next hop or its
locator address is not found, the packet is dropped. If the next hop has multiple
locator addresses, a locator address is decided in accordance with the hash value
of ovstack header. When a locator address of next hop is decided, the packet is
encapsulated with UDP and IP headers. A source IP address is decided from
own locator addresses by hash value. At last, the packet encapsulated up to IP
header is passed to IP routing stack, and transmitted to the next hop. When a
relay node receives an encapsulated packet, remove outer IP and UDP headers
at first. Next, the packet with ovstack header is processed by ovstack routing
layer in the same manner as received from application drivers. In this way,
ovstack avoids the performance degradation due to re-encapsulation on relay
node by multihop overlay routing without decapsulation of ovstack header.
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4.1.2. Example: an Application Driver for Ethernet

We designed Overlaid Ethernet (oveth) as an application driver to transport
ethernet frames on an ovstack overlay. oveth is implemented as a device driver
for pseudo ethernet interface. oveth pseudo interfaces and its FDB are created
for each VNI, which means layer 2 segments of each VNI are completely iso-
lated. A sender node encapsulates packets from an oveth interface with a VNI
corresponding the interface, receiver nodes can identify the layer 2 segment that
packets belong to. Thus, oveth achieves multi-tenancy on an ovstack overlay by
utilizing VNI field of ovstack header. Moreover, when packet is transmitted to
ovstack routing layer from oveth, oveth driver fill the hash field of the ovstack
header. The number of hash is calculated from source MAC address, destina-
tion MAC address and ether type of an inner ethernet frame to prevent packet
reordering from load balancing of ovstack layer.

FDB of oveth is constructed in the same way as VXLAN does. When re-
ceiving encapsulated packets from ovstack routing layer, oveth driver learns the
pair of i) source MAC address of inner ethernet frame and ii) source node ID
of outer ovstack header. If a destination node ID is not found on FDB when
transmitting packets, the destination node ID is set to a given node ID which
is configured as a destination of broadcast MAC address. By building a route
of the given ID as a multicast route, broadcast frames are transmitted to all of
ovstack nodes that join an oveth overlay network.

4.2. Control Plane

As described in Section 2.1, locator/ID separation architecture achieves
multi-home and mobility like LISP does. However, as described in Section 2.5.2,
control and data plane systems of LISP depends mutually, and so it causes de-
velopment and deployment cost. On the other hand, VXLAN data plane does
not have these dependencies, then E-VPN [14] reuses VXLAN header into wide
area networks with BGP based control plane system. In E-VPN, VXLAN be-
comes just a data plane system, and BGP handles pairs of destination MAC
address and VTEP IP address. To be more deployable, data plane system in-
cluding encapsulation header format and control plane system shall be isolated,
and the definition of API between both planes is needed.

ovstack is a data plane, and its routing table and forwarding architecture
is isolated from any control plane systems. Therefore, ovstack as a data plane
provides APIs for only operations of routing tables to control plane systems.
Moreover, in order to cooperate with ovstack we designed and implemented two
control plane protocols to demonstrate that ovstack can accommodate multiple
types of overlay networks for each requirement. They construct a unicast routing
table and one multicast route for transporting ethernet frames by oveth.

4.2.1. API of Data Plane for Control Plane

We designed an API of ovstack routing layer to configure RIB and LIB,
and control plane systems can control ovstack routing tables through this API.
To achieve the isolation of control plane and data plane, ovstack routing layer

11



offers only APIs to configure LIB, RIB and own node ID information. Thus,
data plane does not have to consider how control plane systems to calculate
routing tables.

Table 1 shows supported operations of the API. The operation column in-
dicates each command name, and the attributes column indicates necessary at-
tributes of a command name. All operations must specify the application that
is the same number of application field of ovstack header described in Section
4.1.1 to isolate operations among ovstack overlays. ovstack provides multiple
overlay networks for each applications, so that all identifier spaces such as own
node IDs and routing tables must be separated for each control planes and
overlays. NODE operations modify or get the own node ID, and LOCATOR
operations modify locator IP addresses of own node. NODE operations mod-
ify a LIB that contains information of node IDs and locator addresses of other
nodes, and ROUTE operations modify a RIB that is an actual routing table
of an overlay. By using this API, control plane systems can construct tailored
overlay topologies through controlling RIB and LIB of the ovstack data plane.

Table 1: Operations that are offered to control plane systems by ovstack routing layer.

Operation Attributes

NODE ID SET application, node ID
NODE ID GET application
LOCATOR ADD application, locator address, weight
LOCATOR DEL application, locator address
LOCATOR GET application
NODE ADD application, node ID, locator address, weight
NODE DEL application, node ID, locator address
NODE GET application
ROUTE ADD application, destination node ID, next hop node ID
ROUTE DEL application, destination node ID, next hop node ID
ROUTE GET application

4.2.2. End-to-End LAN

End-to-End LAN (e2LAN) is a control plane system of ovstack. It creates
end-to-end full-mesh topology. Thus, the topology built by e2LAN is similar to
topologies of VXLAN and LISP. e2LAN constructs RIB from the information
of LIB. When e2LAN starts, e2LAN daemon obtains information of nodes and
its locator addresses from LIB through NODE GET operation. Then, e2LAN
installs new route entry “to Node A via Node A” through ROUTE ADD com-
mand.

e2LAN daemon is executed with following arguments: an application num-
ber, an own node ID, and an ID for multicast route. e2LAN checks a LIB and
modifies a RIB that are specified by the application number. Moreover, e2LAN
constructs one multicast route that reaches to all of ovstack nodes that join an
overlay network. This multicast route is used for transporting broadcast frames
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via oveth. The multicast route constructed by e2LAN is star topology with one
reflector node, where a node with biggest node ID in LIB is elected as a reflector
node.

4.2.3. ovstack Resilient Overlay Network

ovstack Resilient Overlay Network (vRON) is an userland software of a con-
trol plane protocol for ovstack. It is implemented a part of RON algorithm.
vRON constructs delay shortest path topology. Each ovstack nodes with vRON
measures delay between own node and other nodes, and exchanges delay in-
formation between all of nodes. Using delay as cost, a node calculates overlay
route to other nodes with Dijkstra algorithm. vRON knows list and change of
ovstack nodes in same overlay network through similar way to e2LAN. vRON
checks the ovstack LIB through the API, and when node is added or deleted,
vRON nodes recalculate overlay routing table.

vRON daemon is executed with following arguments: an application number,
an own node ID, and an ID for multicast route. vRON checks a LIB and modifies
a RIB that are specified by the application number. vRON also constructs a
multicast route that also reaches to all of ovstack nodes in a same overlay
network. Different from e2LAN, a multicast route of vRON is calculated with
Prim’s algorithm. Thus, a multicast route becomes minimum spanning tree
between ovstack nodes.

4.3. Alternative data plane protocol for overlay layer

We propose ovstack as a data plane for overlay layer. Similarly, other data
plane protocols can be designed certainly. The functionalities of overlay layer
are defined by following items:

• node identifier and routing on overlay layer,

• identifier for encapsulated application, and

• isolation of control and data planes by defining API.

Node identifier and routing on overlay layer provide topology flexibility for
specific requirements such as delay or bandwidth. We uses full flat ID as node
identifier for ovstack, however longest match will also be used when considering
scalability. Identifier for upper layer application, called application field in ovs-
tack, is needed for that multiple applications use single data plane system like
protocol number of IP header. Furthermore, defining API between control and
data plane systems to isolate both planes is significant. This isolation achieves
that operators and developers can utilize appropriate control plane systems for
their purposes without data plane system replacement.

By adding or implementing these functionalities, same benefits can be pro-
vided out of the existing solutions. For instance, an identifier for encapsulated
packet type on VXLAN is proposed [15].
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4.4. Implementation

We implemented all of ovstack components as a Linux kernel module called
ovstack.ko, and implemented two control plane systems as userland daemons.
ovstack is one of network protocol stack above transport layer, so that we im-
plemented ovstack as a part of network stack of Linux. When ovstack.ko is
loaded, it create UDP socket to send and receive encapsulated packets, and it
exports two functions to kernel space to inject packets to ovstack routing layer
and to receive packets. Furthermore, We implemented oveth as an ethernet de-
vice driver of Linux. oveth uses the two functions exported by ovstack to send
and receive encapsulated ethernet frames between ovstack.

The API to communicate control plane systems and ovstack is implemented
as a extension of Netlink API [16]. Netlink has a mechanism called Generic
Netlink to add new family dynamically. ovstack.ko add a ovstack family to
Netlink as one of Generic Netlink family. ovstack family provides operations
described in Section 4.2.1, so that control plane systems that calculate actual
topologies and routing tables can install route entries to ovstack routing layer
through this Netlink API like Quagga [17] software suites.

As control plane systems, we implemented vRON and e2LAN as userland
software of Linux. They checks and modifies RIB and LIB through the Netlink
API for ovstack. Moreover, in order to maintain and confirm RIB and LIB
easily in actual environments, we implemented a couple of iproute2 extensions.
Users and developers can operate ovstack through a similar way to operat-
ing IP layer of Linux kernel. The extension support the following operations:
add/delete/show node and locator address information of LIB, add/delete/show
route entries of RIB, and set own node ID and locator address. The command
syntax of extension is modeled after ip command. For example, you can add
new route by ip ov route add app A to X.X.X.X via Y.Y.Y.Y command,
and you can see routing table by ip ov route show command.

5. Evaluation

In this section, we present our evaluation on the performance of our proposed
method. More specifically,

• we evaluate the data plane (ovstack) performance to reveal additional
overhead on packet encapsulation, and

• two control planes, e2LAN and vRON, are evaluated focusing on the vari-
ations of path construction between them.

The first evaluation is to figure out data plane performance. ovstack does
not need packet encapsulation and decapsulation when forwarding packets. It
will improve overlay packet forwarding performance compared to using existing
tunneling protocols. The second evaluation is to demonstrate that ovstack can
accommodate various overlay topologies by exchanging control plane systems.
In order to show that, we evaluated two control plane systems, e2LAN and
vRON, focusing on the delay as an example metric on a simulator environment.
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Table 2: Evaluation Equipment.

CPU Memory Linux Kernel

ovstack node Core i7 3770K 3.5GHz 32GB 3.8.0-19-generic
tester node Xeon E5 2420 1.9GHz 16GB 3.0.93-netmap

5.1. Data Plane

Our first evaluation is about forwarding performance with throughput, delay,
and jitter measurement to figure out performance degradation or improvement
because of encapsulation beyond layer boundaries. ovstack forwards encapsu-
lated packets above network layer. As show in Figure 5, 1) ovstack forwarding
performance will degrade due to overhead of decapsulation and encapsulation
for IP and UDP headers. However, 2) ovstack performance will be better than
overlay forwarding with existing tunneling protocols because ovstack does not
require decapsulation and encapsulation for overlay headers (e.g., VXLAN). In
this evaluation, we figure out these degradation and improvement by comparing
packet forwarding performances on each layer.

The computer nodes used in this performance tests are show in Table 2, and
test topologies are shown at Figure 6. All of inter connect of nodes are Intel
X520 10 Gbps Ethernet cards with direct attach cables. The tester software used
in tests is implemented using netmap [18]. Because of ovstack forwards pack-
ets in kernel space, the maximum bandwidth of test traffic generated by most
software traffic generators (e.g, iperf or pktgen) may be forwarded by ovstack
without packet loss. Thus, we used netmap for generating test traffic. Then,
we measured the performance with IP routing, ovstack routing, and switching
between two different VXLAN networks as shown in Figure 5. All test traffic of
IP, ovstack and VXLAN packets are generated by a tester node.

At first, we tested the throughput of implementations changing packet size
of test traffic from 64, 128, 256, 512, 1024, 1500, 2048 to 4096 bytes. At cases
of each packet size, the test traffic was transmitted for 180 sec.

Figure 7(a) shows the result of throughput measurement. The result shows
that the performance of ovstack is worse than the one of IP due to packet
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encapsulations. However, ovstack performance is comparable to IP routing when
packet size is above 1500 bytes. On the other hand, the performance of ovstack
is better than VXLAN’s result. This is because, in VXLAN case, decapsulation
packets, switching, re-encapsulation with VXLAN, UDP, IP headers processes
are required. Thus these wasted processes cause performance degradation. This
provides the fact, as described Section 2.5.1, routing and forwarding on overlay
layer can reduce the overhead of overlay routing that was constructed from
existing overlays having full-mesh tunneling topology.

Figure 7(b) shows the result of forwarding delay test, and Figure 7(c) show
the jitter of packet forwarding. In case of both tests, we used 128 bytes packet
size because when the timestamp is inserted to payload of VXLAN encapsulated
packet, the packet length is longer than 100 bytes (outer ethernet header, outer
IP header, UDP header, VXLAN header, inner ethernet header, inner IP header,
and struct timespec). The jitter denotes the variance of the difference in round
trip time between successive packets.

With the results, performance of ovstack is worse than IP routing without
encapsulation as we expected. The cause of this degradation is also encapsula-
tion obviously. However, it is better than VXLAN’s one, delay decreased 12 %
than VXLAN and jitter is 8 % lower than VXLAN. These results means that the
routing on overlay layer is effective against routing using tunneling technologies,
as well.

5.2. Control Plane

To demonstrate that ovstack can accommodate different overlay topologies
on one data plane system, we designed and implemented two control plane sys-
tems as a proof of concept. e2LAN constructs full-mesh topology as existing
overlay networks, and vRON constructs delay based shortest path topology.
Then, through comparing delay between all of nodes in each overlay topology
constructed by e2LAN and vRON, we show that ovstack can meet specific re-
quirements for applications by only exchanging control plane systems.

In order to demonstrate control plane implementations in a large network,
we simulated the network using ns-3 [19] and Direct Code Execution (ns-3-
dce) [20] extension. ns-3-dce can emulate Linux kernel and userspace on ns-3
simulation environment. We simulated Linux nodes including ovstack kernel
module and control planes on ns-3 simulated network. The underlay IP network
topology of simulated environment is AS-Level eBGP topology. Quagga is used
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Figure 7: Routing and forwarding packet performances about throughput, delay, and jitter.

for routing software of eBGP. Therefore, in simulated environment, one Linux
node is equal to, one ovstack node, one eBGP router, and one AS. ASes used
in simulation are top 30 ASes from JPNIC AS, which are selected from CAIDA
AS relationship [21] by anybed tools [22].

Figure 8 shows cumulative distribution function of delays between all node
pairs in underlay IP network, e2LAN overlay network, and vRON overlay net-
work. In this simulation, ethernet frame is used as overlayed application through
oveth driver, and delays of links between simulated node are randomly changed
from 10 to 50 ms. Simulations are performed 5 times changing delays for each
link. Delays between nodes are measured by 126 bytes size UDP packets that
timestamp is inserted to payload. With the result, delays of e2LAN overlay and
eBGP based IP network are roughly equal. This is because e2LAN constructs
full-mesh tunneling topology as VXLAN and LISP, thus paths between nodes
are equal to IP routing. The reason why delays of e2LAN are longer than IP
routing is overhead of encapsulation and decapsulation for measurement packet.
On the other hand, the delay at vRON topology is lower than e2LAN and IP
routing. Since vRON can select shorter delay path between nodes on overlay
layer without being tied to routing table of IP layer. As the result, this proof
of concept shows that, different overlay topologies specialized particular metric
such as delay can be constructed on the ovstack data plane.
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6. Conclusion

We have proposed ovstack, a data plane for overlay networks by introducing
new abstraction layer between existing network layer and the applications. The
data plane aims to decouple any control planes, which have different require-
ments, and provide a flexible path configuration. Then, we have designed and
implemented the proposed system. We evaluated the performance of ovstack as
a data plane, and the result is acceptable. Furthermore, we implemented and
tested two control plane protocols for ovstack. The result of control plane simu-
lation shows that ovstack can accommodate multiple overlay networks for each
requirement. As a result, we conclude that, the overlay network is abstracted
as a layer of the network layering model. Through using the ovstack, developers
will be able to create new overlay routing systems by developing control plane
only, utilizing common data plane that has acceptable performance.
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