
Layer-3 Multipathing in
Commodity-based Data Center Networks

Ryo Nakamura
University of Tokyo

Email: upa@wide.ad.jp

Yuji Sekiya
University of Tokyo

Email: sekiya@wide.ad.jp

Hiroshi Esaki
University of Tokyo

Email: hiroshi@wide.ad.jp

Abstract—Improving availability and throughput is a signif-
icant challenge for data center networks. Recent studies have
attempted to use a variety of routing and multipathing techniques.
However, no method has yet managed to combine availability and
throughput improvement with actual deployability, usually be-
cause of dedicated hardware requirements. In this study, we focus
on commodity-based layer-3 data center networks. We propose a
method for layer-3 multipathing via the novel usage of common
IP encapsulation techniques for throughput improvement. Our
approach requires minimal software modifications at end hosts.
The method enables us to construct an efficient data center
network using commercial off-the-shelf (COTS) switches. In this
paper, we describe the approach and an evaluation, in which our
approach achieves an above-85% forwarding rate in general, and
100% for an experimental traffic pattern.

I. INTRODUCTION

Improving the availability and throughput of networks is
quite an important topic for data center environments. For a
data center network, availability means being able to adapt
flexibly to topology changes. During the operation of a service
network, the topology may change from time to time for
a variety of reasons, including maintenance, enhancements
and breakdowns. The data center network should maintain its
services while adapting flexibly to these topology changes. In
addition to maintaining its availability, improvements to the
throughput of a given network should be sought. With the
emergence of cloud computing and distributed applications,
traffic in data centers has been growing rapidly. Nevertheless,
administrators cannot simply deploy additional hardware to
increase capacity on every occasion because of cost. Therefore,
improving the aggregated bandwidth of a given network is an
important challenge for data centers.

To address these challenges, many approaches have been
proposed by both operator and research communities. A hop-
by-hop routing architecture with dynamic routing protocols
is a good way to deal with the availability issue. When the
topology is changed, the network switches detect the change
and recalculate the routing tables, following which the network
recovers autonomously. It is not necessary to consider the
totality of the network. Effectively, this approach localizes
the impacts of topology changes. The use of the traditional
IP network is a proven technique from the viewpoint of
availability. Constructing data centers using layer-3 networks
to support availability has been proposed and the method
developed [1], [2]. In addition, some methods introducing this
architecture to layer-2 networks have been proposed [3], [4].

To improve the throughput of a given network, there are

many approaches applicable to data center networks. One
popular technique is the use of multipathing [5]. Prior work
on topologies that have alternative paths between arbitrary
hosts includes fat-tree, BCube [6], and random graph [7].
Furthermore, various approaches improving throughput by
multipathing via these topologies have been proposed [5]. A
classic way to achieve multipathing is Equal Cost Multipath
(ECMP). ECMP-enabled switches divide traffic into multiple
next-hops by considering hash value of flows. Alternative
schemes achieve efficient multipathing by introducing special
addressing schemes and modified hardware to both layer-2 and
layer-3 networks [8], [9].

Although existing approaches achieve good availability
and/or throughput via multipath topologies, many of these
approaches have yet to be deployed. Economic cost is a signif-
icant problem for data centers [10], therefore, administrators
should use commodity products on most occasions. However,
existing proposals for availability [3], [4] and throughput
improvement by multipathing [8], [9] require hardware that
is not commercially available. This is a barrier to deployment
and increases the cost of building a network. To achieve good
throughput while using commodity hardware, ECMP is the
usual approach [1], [2], [11]. However, it is known that ECMP
cannot use multiple paths efficiently because ECMP does not
account for flow bandwidth, which can lead to oversubscription
[8]. Accordingly, there is no current method that can achieve
optimal both availability and optimal throughput while using
commodity switches.

In this paper, we focus on multipathing for a layer-3
data center network with unmodified commercial off-the-shelf
(COTS) switches. Layer-3 multipathing offers both availabil-
ity and throughput improvement, and using COTS switches
eliminates barriers to deployment. In the proposed method,
traffic is split into multiple paths using a novel usage of IP
encapsulation technique. We evaluated the proposed method
for a fat-tree topology. The results show that our approach
achieves a forwarding rate of 100% for a particular traffic
pattern and over 85% for all traffic patterns. This is comparable
to the performance of existing proposals that require dedicated
hardware.

The contributions of this paper include the following.

• A proposed method for layer-3 multipathing with
COTS switches.

• The design and implementation of modifications for
the end host software stack.

In the following sections, related work is summarized and
compared, we describe our approach and we give the results
of an evaluation of its throughput improvement. Finally, we
summarize the results of this study and suggest future work.

II. RELATED WORK

Various approaches addressing issues for data center net-
works have been considered, proposed, and developed. Table I
shows a comparison of characteristics of prior work based on
SPAIN [12] work. We have added a Topology Change col-
umn to the table, which indicates availability under topology
changes.

As mentioned above, a layer-3 network localizes the impact
of topology changes by using hop-by-hop routing with dy-
namic routing protocols. Facebook [2] and VL2 [11] achieve
their availability by constructing a backbone network based
on a layer-3 network. In addition, both approaches use COTS
switches, which support deployability. However, they use
ECMP to improve throughput on a multipath topology. Or-
dinary ECMP splits traffic into multiple next-hops by hashing
5-tuple without any regard for flow bandwidth. In this way,
ECMP will tend to direct traffic to a particular path. Therefore,
ECMP cannot use the multiple paths efficiently [8].

In contrast to ECMP, SPAIN [12] uses VLAN for multi-
pathing on an arbitrary topology with COTS switches. SPAIN
proposes a greedy algorithm to identify each path in a VLAN.
In SPAIN, end hosts split traffic into multiple paths for
identified VLANs. SPAIN achieves both good deployability
and throughput improvement. However, recomputing and re-
configuration are required when the topology is changed such
as switches being added or dropped. Furthermore, SPAIN lacks
the characteristic of availability.

TRILL [3] and SEATTLE [4] offer availability by introduc-
ing a hop-by-hop routing architecture to a layer-2 network.
However, they require dedicated hardware for the network
switches, resulting in a deployability barrier. On the other
hand, PortLand [9] achieves throughput improvement with
multipathing by introducing a dedicated address assignment
scheme and topology restrictions. The dedicated addressing
scheme for multipathing on an IP network was first proposed
by Al-Fares et al. [8]. PortLand updates this scheme for
the MAC address of Ethernet. However, it also requires the
installation of dedicated hardware switches.

In this paper, we propose a method for achieving mul-
tipathing in a layer-3 network that is different from ECMP
with unmodified COTS switches. It provides availability as a
benefit of using the layer-3 network, throughput improvement
by using a multipathing method and deployability by using
COTS switches.

III. APPROACH

We propose the method on the assumption that the com-
modity data center network is based on IP routing and for-
warding technologies that are already available via COTS
switches. Enabling a layer-3 network design provides both
availability and deployability. In the proposed method, the end
hosts select a path among multiple paths for each flow of
traffic. Hardware COTS switches do not have a functionality

Host S� Host D �

Payload�

X.X.X.X� Switch C�

Host S�

Switch B�

Switch A�

Switch C�

Switch D�

Host D�

Host S� Host D �

Payload�

Fig. 1. How to specify the extra path using encapsulation techniques. When
the shortest-path from host S to D passes through switch B, host S specify
the extra path through switch C by adding outer IP header to switch C.

of efficient traffic balancing, and ECMP does not consider
the bandwidth of an individual flow which can lead to over-
subscription. We therefore shift the functionality of traffic
balancing from the network switches to the end hosts, similarly
to SPAIN. However, in contrast to SPAIN, the end hosts use
the IP encapsulation technique supported by COTS switches
to specify path in the layer-3 network.

Fig. 1 shows the overview of the proposed method. Each
path from a host to others is specified by a corresponding
relay switch. When the shortest path from switch A to D
passes through B, the end hosts can identify an extra path
by specifying switch C, and split their traffic by specifying
either switch B or C for packets. Therefore, if an identifier is
added to a packet that specifies the address of the relay switch,
an end host can select a path explicitly.

To route a packet through a specified relay switch, the
source route option can be used. Source route options, IPv4
loose source and record route option and IPv6 routing header,
are standardized as a part of the IP stack specification, and
almost all COTS switches therefore support them routinely.
When a host sends a packet to another host, the sender can
add a source route option with the address of the corresponding
relay switch to specify a through path explicitly. However,
the source route option causes degradation of the forwarding
performance because it is usually processed by the CPU. The
source route option is not suitable in practice.

Instead of using a source route option, we use an IP
encapsulation technique as an identifier to specify the relay
switch. In the proposed method, the end hosts add a tunneling
header and encapsulate it in an outer IP header when sending
a packet to other hosts. The destination address of the inner
header is the destination host, and the source address of the
inner header is its own address. Further, the destination address
of the outer header is the relay switch, and the source address
of the outer header is a proper address that does not exist
in the network. As shown in Fig 1, host S sends a packet
to host D encapsulated in an outer IP header with switch C
as the destination. When the packet is received by switch
C, the outer IP header and tunneling header are removed,
with the original packet then being forwarded to the original
destination, host D. In this way, end hosts can specify a path
from a set of multiple paths by using tunneling protocols.
Note that the encapsulation technique will incur throughput
degradation because of the reduction of packet size. However,
this may not be significant because the jumbo frame is often
adopted in data center environments.

TABLE I. COMPARISON OF RELATED WORK BASED ON SPAIN [12].

Wiring Topology Usable paths Uses COTS switches? Topology Change
Facebook [2] Multiple Tree ECMP YES YES
TRILL [3] Arbitrary ECMP NO YES
SEATTLE [4] Arbitrary Single Path NO YES
PortLand [9] Fat-tree ECMP NO NO
SPAIN [12] Arbitrary Multiple Paths YES NO
VL2 [11] Fat-tree ECMP YES YES
Proposed method Arbitrary Multiple Paths YES YES

When using tunneling protocols for this approach, a tunnel
scalability problem may occur. To utilize all links in a data cen-
ter network efficiently, each end host should be able to specify
any relay switch. The number of tunnels will then be given by
the number of hosts× relayswitches, whereas COTS switch
hardware supports at most hundreds of tunnels. Therefore,
this will not be suitable for large-scale data center network
that accommodates thousands of servers. The proposed method
avoids this scalability issue by using a non-existent address for
the source address in the outer IP header. The X.X.X.X shown
in Fig. 1 indicates this address. In this method, the packet
direction through a tunnel is always unidirectional. In contrast
to conventional tunnel usage, packets are always encapsulated
and sent from end hosts to relay switches (no encapsulated
packet is sent from relay switches to end hosts). Therefore, we
can use a single IP address that does not exist in the network
as the source address for all tunnels. As a result, each relay
switch will have only one tunnel between X.X.X.X and the relay
switch itself, thereby avoiding the tunnel scalability issue.

End hosts maintain sets of addresses of relay switches
for each corresponding destination network. Relay switches
identify corresponding paths from a host to a destination.
When applications send packets, the destination address of
each packet is checked against the destination prefixes. If there
is a matched, packet is encapsulated with a tunneling protocol
to a relay switch selected from the set of relay switches for that
prefix. In this way, end hosts can split the traffic to destinations
via the set of corresponding relay switches.

A. Flow Assignment Algorithm

In addition to this method of specifying a path using
the end hosts, an algorithm for balancing the traffic load
across multiple paths is needed. End hosts should split traffic
strategically into multiple paths, aiming to maximize the
aggregated bandwidth of the whole network. Traffic sent from
a host consists of flows that are identified by a 5-tuple
(source and destination IP addresses, source and destination
port numbers, and protocol number). Packets belonging to the
same flow should be taken through the same path to avoid
packet reordering that would cause performance degradation
for both TCP and the applications. Moreover, each flow has
different bandwidth. Therefore, the algorithm working in the
end hosts should select paths for each flow taking account
of the bandwidth of individual flows. In this study, we use
two algorithms, called the hash-based and the flow-based
algorithms to maximize the aggregated bandwidth.

The hash-based algorithm is the same as ECMP. A relay
switch for a flow is decided by a calculated hash value from
the 5-tuple for the flow. This algorithm does not consider the
bandwidth of individual flows, so the traffic will tend to be via

a particular path. As a result, it will not be able to maximize
the aggregated traffic.

The flow-based algorithm is based on an algorithm pro-
posed by Al-Fares et al. [8]. This algorithm considers the
bandwidth of individual flows, and attempts to balance traffic
equally among multiple paths. Balancing flows among paths
equally is a well-kwon problem and is a variant of the NP-hard
bin packing problem [8]. Therefore, Al-Fares et al. propose a
heuristic algorithm for assigning flows among multiple paths
via the modified switch. We adapt this algorithm for use with
end hosts. The adapted algorithm is outlined as Algorithm 1.

Algorithm 1 The flow assignment algorithm.
function ENCAPSULATEPACKET(packet)

Hash 5-tuple of packet, and find this flow f .
if such a flow f exists then

update packet counters of flow f ;
else

Record the new flow f ;
Assign flow f to a relay by the hash value;

end if
Encapsulate packet to relay switch flow f assigned;

end function

function REARRANGEFLOWFORPREFIX(perfix)
for relay in relays of prefix do

Find the Rmax and Rmin with the largest and
the smallest traffic respectively;
Calculate D, the difference between Rmax and
Rmin;

end for
for flow in flows of prefix do

Find the largest flow f whose size is smaller
than D;

end for
if such a flow exists then

Switch the relay point of flow f to Rmin;
end if

end function

EncapsulatePacket() is called to decide on a relay switch
when packets are sent from applications. Packets belonging
to known flows are encapsulated with an outer IP header for
the relay switch to which flows are assigned. If a packet is
not part of an existing flow, it is recorded as a new flow
and a relay switch is assigned using the hash value of the 5-
tuple. RearrageFlowForPrefix() is called periodically for each
destination prefix. It reassigns the largest flow that is smaller
than the margin between the largest and the smallest flows for
that destination.

B. Usable Tunneling Protocols

Various tunneling protocols have been proposed, standard-
ized, and developed. The proposed method adopts a tunneling
protocol to specify each path similarly to source routing.
To achieve tunnel scalability, the source address of outer IP
headers from all end hosts are faked as an IP address, as
described above. Therefore, those types of stateful protocols
that require maintenance of the session between tunnel end
points cannot be used. For example, some tunneling protocols
using authentication methods such as IPsec technologies and
Layer 2 Tunneling Protocols cannot be used for our approach.

In contrast to stateful protocols, stateless protocols can
be adopted for our proposed method. Table II shows usable
tunneling protocols. Encapsulation techniques are instrumental
for various purposes such as Virtual Private Network (VPN),
network virtualization, and software-defined networks. Tunnel-
ing protocols have been proposed and developed over time for
many uses. Therefore, even if dedicated schemes and hardware
for multipathing are not developed, the proposed method can
be used throughout actual data center environments. Admin-
istrators of data centers should choose among these protocols
in accordance with their equipment.

TABLE II. USABLE TUNNELING PROTOCOLS FOR THE PROPOSED
METHOD.

Protocol name Specification Published year
IP in IP Tunneling RFC1853 1995
GRE RFC2784 2000
EtherIP RFC3378 2002
LISP RFC6830 2011
VXLAN RFC7348 2014
NVGRE [13] Internet Draft 2012 ∼
GUE [14] Internet Draft 2013 ∼
Geneve [15] Internet Draft 2014 ∼

IV. END HOST MODIFICATION

The proposed method shifts the functionality of traffic load
balancing from the network switches to the end hosts. In this
section, we describe the design of the modification for end
hosts called iplb. When a host sends a packet, iplb finds
a set of relay switches corresponding to the destination prefix
of the packet. Then, if the prefix is found, the host selects
a relay switch using the algorithm described in Section III-A
and encapsulates it in a tunneling protocol.

Fig. 2 shows an overview of the modification. The function
iplb constructs the longest match-based routing table in
kernel space. Each entry in the table contains a set of relay
switches for a corresponding prefix. When an application in
userland sends a packet, iplb checks the destination address
of the packet. If the destination address is found in the table,
the packet is encapsulated in a tunneling protocol. The relay
switch for the destination in the outer IP header is decided by
either the hash-based or the flow-based algorithm from the set
of relay switches.

We implemented iplb as a kernel module for Linux1.
It provides the functionalities described above and an API to
modify and control the routing table and relay switch entries in
Linux kernel space. This API is designed and implemented as
a protocol family in Netlink [16]. In addition, we implemented

1https://github.com/upa/iplb

Kernel�

Userland
Applications�

iplb module�

Tun hdr +
IP packet�

Match�
IP packet�

Destination Prefix� Relay switches�

10.0.0.0/8� relay1, relay2, relay3�

10.1.2.0/24� relay4, relay5�

Fig. 2. Overview of the modification for software stack of end hosts.

Switch B�

Switch A�

Switch C�

Switch D�

Receiver1� Receiver2�Sender2�Sender1�

Fig. 3. The experimental topology for the preliminary evaluation.

an extension for the iproute2 [17] software suites. By using this
iproute2, users can add, delete, or modify the routing table.

V. EVALUATION

Availability and deployability are achieved by using a
commodity-based layer-3 network as described in Section II
and III. In this section, we investigate throughput improvement
using our proposed method. To demonstrate that the method
can use multiple paths efficiently, we evaluated the method in
two cases. 1) as a proof-of-concept for the method, we adopted
it for a simple multipath topology, and 2) we evaluated it for a
fat-tree topology as a typical example of a data center network.

A. Preliminary Experiment

In the preliminary experiment, we applied the method to a
simple multipath topology that had two paths between four
hosts. The test topology is shown in Fig. 3. We prepared
the experimental set up using commodity equipment. The
switches were Juniper Networks EX4200-48P, the two sender
and two receiver hosts were 1U servers with an Intel Xeon
L3426 (1.87 GHz) CPU and 4 GB memory. All network
interfaces were 1000BASE-T. In the experiment, Sender1
sent test traffic to Receiver1, and Sender2 sent test traffic to
Reveicer2, balancing the traffic via SwitchB and SwitchC using
the proposed method. We evaluated the performance in terms
of the sum of the received traffic for the two receivers. When
not multipathing, the link between SwitchA and SwitchB will
overload and the overall received traffic will be 1000 Mbps.

The test traffic from a sender comprised multiple flows.
To generate test traffic with multiple flows, we implemented a
traffic generator called flowgen2 witch generates multiple UDP
flows to a host. In addition, flowgen can support the following
three distribution patterns of bandwidth for individual flows to
emulate real traffic.

2https://github.com/upa/flowgen

 0

 0.2

 0.4

 0.6

 0.8

 1

 1400 1500 1600 1700 1800 1900 2000

C
C

D
F

The sum of received traffic [Mbps]

Hash-based
Flow-based

(a) Same

 0

 0.2

 0.4

 0.6

 0.8

 1

 1400 1500 1600 1700 1800 1900 2000

C
C

D
F

The sum of received traffic [Mbps]

Hash-based
Flow-based

(b) Random

 0

 0.2

 0.4

 0.6

 0.8

 1

 1400 1500 1600 1700 1800 1900 2000

C
C

D
F

The sum of received traffic [Mbps]

Hash-based
Flow-based

(c) Power-law

Fig. 4. Results of the preliminary experiments. The y-axis represents a complementary cumulative distribution functions for aggregated received traffic on
receiver1 and receiver2 for Same, Random, and Power-law flow distribution patterns.

• Same: the ratio of bandwidth for each flow is uniform.

• Random: the ratio of bandwidth for each flow is
random.

• Power-law: the ratio of bandwidth for each flow fol-
lows a power law.

In this experiment, all distribution patterns were evaluated with
20 flows. The packet size for the test traffic was 1024 bytes.

Fig. 4 shows the results of the experiment. The y-axis of
the results represents a complementary cumulative distribution
function across 20 runs/permutations of tests for each flow dis-
tribution pattern, over 1 minute. Fig. 4(a) shows the result for
the Same flow distribution pattern. The hash-based algorithm
achieves 100% probability up to 1650 Mbps. Further, the traffic
trended as expected. In contrast to the hash-based algorithm,
the flow-based algorithm achieved 100% link utilization for
Same flow distribution pattern. Moreover, for the Random
(Fig. 4(b)) and Power-law (Fig. 4(c)) patterns, the flow-based
algorithm performed better than the hash-based algorithm.
This shows that the flow-based algorithm can use multiple
paths better than a hash-based algorithm similar to ECMP.
However, the flow-based algorithm cannot achieve 100% link
utilization for the Random or Power-law flow distribution
patterns. This could be caused by the heuristic algorithm
and/or possibility that there is no assignment pattern achieving
100% link utilization. In addition, the reason that not all
patterns can achieve 2000 Mbps is the encapsulation overhead.
In this preliminary experiment, we used a GRE header for
encapsulation. This involves 2.3% (46 Mbps) of throughput
reduction with 1024-byte packets. Despite this, for a packet
size of 9000 bytes, the throughput reduction is just 0.3%.

B. Evaluation for a Fat-tree Topology

The preliminary experiment shows the proof-of-concept
multipathing using the proposed method. We next evaluated it
from the viewpoint of throughput improvement in data center
networks. We adopted the method for a 3-level 4-ary fat-tree
topology based on the evaluation by Al-Fares et al. [8]. The fat-
tree topology for this experiment is shown in Fig. 5. There are
two types of multiple path sets. For inter-pod communication,
there are four multiple paths through four root switches. For
intra-pod communication, there are two multiple paths through
two aggregation switches in each pod.

Aggr� Aggr�

Edge� Edge�

Root� Root� Root� Root�

Root� Aggr� Edge�: Root switch� : Aggregation switch� : Edge switch� : End hosts�

Pod�

Fig. 5. Experimental topology for the evaluation: 3-level 4-ary fat-tree.

Instead of preparing physical equipment, we simulated
the network using ns-3 [18] and Direct Code Execution (ns-
3-dce) [19] extension. The ns-3-dce extension can emulate
the Linux kernel and its userspace in the ns-3 simulation
environment. We simulated the Linux end hosts including iplb
kernel module. The fat-tree network comprised Linux hosts as
layer-3 switches in the ns-3 simulated network.

The test traffic was the same as for the preliminary tests,
namely 20 UDP flows and 1024-byte packets, with GRE being
used as the tunneling protocol. The mapping of sender and
receiver hosts is configured by benchmark suites proposed by
Al-Fares et al. [8]. Although they proposed five benchmark
suites for their dedicated addressing scheme, we used just
two of the benchmarks that were not related to a particular
addressing scheme, as follows.

• Random: a host sends to any other host in the network
with uniform probability.

• Stride(i): a host with index x will send to the host
with index (x+ i)mod16.

Fig. 6 shows the results of the experiments with the fat-tree
topology. The forwarding rate is a percentage of the sum of
received packets to the sum of sent packets (i.e. the aggregated
throughput rate). Hash-based and flow-based refer to the
balancing algorithms, and tree means there is no multipathing.
In the fat-tree topology, there are two paths for communication
from two hosts to two hosts in the same pod, and there are
four paths for communication from four hosts to four hosts in
different pods. Therefore, if the host-to-host mapping is 1-to-1,
100% forwarding rate will be achieved by assigning flows to

 0

 20

 40

 60

 80

 100

Same Random Power

Fo
rw

ar
di

ng
 ra

te
 (%

)

Tree
Hash-based

Flow-based

(a) Random

 0

 20

 40

 60

 80

 100

Same Random Power-law

Fo
rw

ar
di

ng
 ra

te
 (%

)

Tree
Hash-based

Flow-based

(b) Stride (1)

 0

 20

 40

 60

 80

 100

Same Random Power-law

Fo
rw

ar
di

ng
 ra

te
 (%

)

Tree
Hash-based

Flow-based

(c) Stride (2)

 0

 20

 40

 60

 80

 100

Same Random Power-law

Fo
rw

ar
di

ng
 ra

te
 (%

)

Tree
Hash-based

Flow-based

(d) Stride (4)

Fig. 6. Results of the evaluation for the fat-tree topology. The results are
the averages of 30 runs/permutations of the benchmark tests for each flow
distribution pattern.

multiple paths completely equally. As a result, when the flow
distribution pattern is Same, the flow-based algorithm achieved
100% forwarding rate for all benchmark suites.

For the Stride(1) benchmark shown in Fig. 6(b), all traffic
is forwarded by edge switches, so there is no overloaded link.
For the Stride(2) benchmark shown in Fig. 6(c), the test traffic
is confined to each pod. All test traffic is not routed across
root switches. This is similar to four sets of the preliminary
test topology, so the results for Stride(2) are the same as the
average of those of the preliminary tests shown in Fig. 4. For
the Stride(4) benchmark, all traffic is taken through four root
switches. Fig. 6(d) shows the results for Stride(4). Without
multipathing, all traffic goes via one root switch in accordance
with the shortest-path tree. Therefore, the forwarding rate for
tree is 25%. By contrast, the hash-based and the flow-based
algorithms achieved over 80% forwarding rates. Overall, the
proposed method using the flow-based algorithm achieved a
forwarding rate of over 85% for all benchmark and flow
distribution patterns.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a method for multipathing
on a layer-3 network with unmodified COTS switches, by a
novel usage of common tunneling protocols supported by com-
modity hardware. We designed and implemented the required
modification of end-host software. We demonstrated that our
proposed method could use multiple paths efficiently, with a
forwarding rate of over 85% for a fat-tree topology. As a
result, the method can enhance availability by enabling a layer-
3 network design and improve throughput by multipathing for
data center networks. Although we have proposed a method for
multipathing, the control plane is not discussed in this paper.
We are now designing a control plane system to automate
configuration and failure recovery, and to offer a more efficient
flow assignment. Furthermore, we aim to investigate the variety
of commodity products that are capable of supporting the
proposed method. Finally, we will evaluate the method for
arbitrary topologies.

REFERENCES

[1] P. Lapukhov, “Building scalable data centers: Bgp is the better
igp,” https://www.nanog.org/meetings/nanog55/presentations/Monday/
Lapukhov.pdf, June 2010, NANOG 55.

[2] A. Andreyev, “Introducing data center fabric, the next-generation
facebook data center network,” https://code.facebook.com/posts/
360346274145943/introducing-data-center-fabric-the-next-generation-
facebook-data-center-network/, November 2014, Facebook, Inc.

[3] D. E. 3rd, T. Senevirathne, A. Ghanwani, D. Dutt, and A. Banerjee,
“Transparent Interconnection of Lots of Links (TRILL) Use of IS-IS ,”
IETF, RFC, May 2014.

[4] C. Kim, M. Caesar, and J. Rexford, “Floodless in seattle: A scalable
ethernet architecture for large enterprises,” in Proceedings of the ACM
SIGCOMM 2008 Conference on Data Communication, ser. SIGCOMM
’08. New York, NY, USA: ACM, 2008, pp. 3–14.

[5] M. Bari, R. Boutaba, R. Esteves, L. Granville, M. Podlesny, M. Rabbani,
Q. Zhang, and M. Zhani, “Data center network virtualization: A survey,”
Communications Surveys Tutorials, IEEE, vol. 15, no. 2, pp. 909–928,
Second 2013.

[6] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C. Tian, Y. Zhang, and
S. Lu, “Bcube: A high performance, server-centric network architecture
for modular data centers,” in Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, ser. SIGCOMM ’09. New York,
NY, USA: ACM, 2009, pp. 63–74.

[7] A. Singla, C.-Y. Hong, L. Popa, and P. B. Godfrey, “Jellyfish: Net-
working data centers randomly,” in Proceedings of the 9th USENIX
Conference on Networked Systems Design and Implementation, ser.
NSDI’12. Berkeley, CA, USA: USENIX Association, 2012, pp. 17–17.

[8] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceedings of the ACM SIGCOMM
2008 Conference on Data Communication, ser. SIGCOMM ’08. New
York, NY, USA: ACM, 2008, pp. 63–74.

[9] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang, P. Miri,
S. Radhakrishnan, V. Subramanya, and A. Vahdat, “Portland: A scalable
fault-tolerant layer 2 data center network fabric,” in Proceedings of
the ACM SIGCOMM 2009 Conference on Data Communication, ser.
SIGCOMM ’09. New York, NY, USA: ACM, 2009, pp. 39–50.

[10] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a
cloud: Research problems in data center networks,” SIGCOMM Comput.
Commun. Rev., vol. 39, no. 1, pp. 68–73, Dec. 2008.

[11] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: A scalable and flexible
data center network,” in Proceedings of the ACM SIGCOMM 2009
Conference on Data Communication, ser. SIGCOMM ’09. New York,
NY, USA: ACM, 2009, pp. 51–62.

[12] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul, “Spain:
Cots data-center ethernet for multipathing over arbitrary topologies,”
in Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation, ser. NSDI’10. Berkeley, CA, USA:
USENIX Association, 2010, pp. 18–18.

[13] P. Garg and Y. Wang, “draft-sridharan-virtualization-nvgre-07.txt,”
IETF, Internet Draft, November 2014.

[14] E. E. Crabbe, E. L. Yong, and E. X. Xu, “draft-ietf-tsvwg-gre-in-udp-
encap-03,” IETF, Internet Draft, October 2014.

[15] J. Gross, T. Sridhar, P. Garg, C. Wright, I. Ganga, P. Agarwal, K. Duda,
D. Dutt, and J. Hudson, “draft-gross-geneve-02,” IETF, Internet Draft,
October 2014.

[16] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov, “Linux Netlink as
an IP Services Protocol,” IETF, RFC 3549, July 2003.

[17] Linux Foundation, “iproute2,” http://http://www.linuxfoundation.org/
collaborate/workgroups/networking/iproute2.

[18] ns-3 project, http://www.nsnam.org/.
[19] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Camara, T. Turletti,

and W. Dabbous, “Direct code execution: Revisiting library os ar-
chitecture for reproducible network experiments,” in Proceedings of
the Ninth ACM Conference on Emerging Networking Experiments and
Technologies, ser. CoNEXT ’13. New York, NY, USA: ACM, 2013,
pp. 217–228.

