
Protocol Independent NIC Offloading for Overlay Networks

Ryo Nakamura∗, Yohei Kuga†, Yuji Sekiya∗, Hiroshi Esaki∗
∗University of Tokyo, †Keio University

ABSTRACT
We propose a novel technique for offloading multiple tun-
neling protocols on NIC hardware. IP overlays have been
proposed and developed for various purposes in the data cen-
ters. In the use cases such as IaaS clouds, a typical end point
of the overlays is host OS and its software network stack.
However, the per-packet encapsulation causes CPU resource
consumption and performance degradation at the end hosts.
The proposed technique enables the OS network stack to of-
fload look-up destination address for inner packets and outer
IP encapsulation without regard to differences of tunneling
protocols. In this paper, we describe the approach and a pro-
totype NIC implementation using a commodity FPGA card.

Categories and Subject Descriptors
D.4.4 [Communications Management]: Network com-
munication

Keywords
NIC Offloading; Tunneling Protocol; Overlay Networks

1. INTRODUCTION
IP overlays are widely used for various purposes. The

most significant use case is Infrastructure as a Service
cloud environment. The multi-tenancy and multi-point
tunneling in the clouds are key functionalities by tun-
neling protocols such as VXLAN [1] and NVGRE [2]. In
such a cloud, hyper-visors connect the overlay networks
directly and forward packets between virtual machines
and the overlays. Therefore, the tunneling protocols are
usually implemented in the OS network stack.
NIC offloading is an effective technique for improv-

ing the tunneling performance. Figure 1 shows the
performance of transmitting 64-byte UDP packets with
Linux kernel 3.16 and an Intel X520 10-Gigabit Ether-
net card. The result indicates that tunneling protocols
cause about 20% performance degradation due to the
per-packet encapsulation overhead. Encapsulation re-
quires the memory access to add outer headers and the
routing table look-up for outer IP header. Therefore,
some NICs begin to equip several functions for tunnel-
ing protocol offloads [3, 4].

 0

 100

 200

 300

 400

 500

No encap IPIP GRE GRETAP VXLAN

pa
ck

et
 p

er
 s

ec
on

d
(k

pp
s)

Figure 1: Transmitting performances of tunnel-
ing protocols with 64-byte packet.

On the other hand, new tunneling protocols for var-
ious purposes have been proposed continuously, for in-
stance service chaining and Network Service Header
(NSH) [5]. It is possible to follow the changes in the tun-
neling protocols by using the software implementation.
However, the existing tunnel offloads lack extensibility
because existing NIC hardware has no APIs for manag-
ing the tunneling protocols and users cannot change the
offloaded protocols. Thus, NIC must be replaced new
one with new ASIC to obtain high performance on new
protocols. In order to follow the rapid growth of new
tunneling protocols and achieve high performance at the
same time, more flexible offloading NICs are needed.
In this paper, we propose a novel offloading technique

for multiple tunneling protocols. All tunneling pro-
tocols have same two operations: look-up destination
IP address corresponding some identifiers embedded in
packets and outer IP encapsulation. The proposed tech-
nique offloads these operations on a NIC. In following
sections, we describe the approach and show a proto-
type implementation using a commodity FPGA card.

2. APPROACH
Figure 2 shows the Linux network architecture of typ-

ical tunneling protocols and our proposed method. The
outer IP encapsulation and the IP routing look-up in the
encapsulation process are common among different tun-
neling protocols. These OS functions can be offloaded
on NIC. However, the decision processes for a destina-
tion address of the outer IP header are based on each

1

•  Add protocol header.
•  Look-up some id.
•  Add outer IP header.

•  Look-up original
IP header destination.	

•  Look-up outer
IP header destination.

Physical NIC

IP Routing Stack

IP Routing Stack

Offload	Offload NIC

Existing Tunnel TX	 Proposed TX	Normal TX	

Protocol
Driver

Protocol
Driver

Protocol
Driver

Figure 2: System design of tunneling protocols
in the OS network stack.

protocol context and identifier. For instance, point-to-
point tunneling (e.g., IPIP) has only a destination and
multi-point tunneling (e.g., VXLAN) decides a destina-
tion IP address in accordance with a destination MAC
address of the inner packet. In order to offload the look-
up based on each context, we define offset and length
for the identifiers like BPF [6] approach.
Although the identifier for look-up is different from

each tunneling protocol, all destination look-up only
check the particular byte string embedded in packets.
The identifiers can be specified relatively by offset and
length. The offset indicates the beginning of the iden-
tifier and the length indicates the bit length of the
identifier in the packets. In case of VXLAN, offset is
16-byte for UDP and VXLAN headers and length is 48-
bit for destination MAC address. In case of NSH over
VXLAN-GPE [7], offset is 24-byte for UDP, VXLAN
and NSH base headers and length is 32-bit for Service
Path ID and Service Index. In this manner, the proto-
col specific look-up can be handled as a single common
operation and offloaded on a NIC.
In order to offload these operations, the NIC has a

table for the destination look-up and a configuration
API. The table is composed of pairs of a configured
length identifier and a destination address for outer IP
header. The NIC does not have concern with what the
identifier is. The identifier is just a byte string and
only defined by the length. The configuration API has
functions to set IP header parameters (protocol number,
ToS and TTL), offset and length, and add or delete
the table entries.

3. PROTOTYPING
We implemented a part of proposed functions in a

prototype NIC using a NetFPGA-1G card [8] with Linux.
Our NIC implementation is still in the first stage; how-
ever, we confirm that it is possible to develop our tech-
nique on commodity NIC hardware. The current imple-
mentation has the only function for the offloading outer
IP encapsulation without the table look-up. The pro-

Table 1: Measuring transmit throughput with
outer IP encapsulation offloading (kpps).
packet no IPIP (offload) VXLAN (offload)
size encap Off On Off On
64 112.00 106.88 114.51 97.52 106.53

1024 29.64 27.68 30.00 27.55 27.33

totype consists of the NetFPGA reference NIC design
and our encapsulation module. The module adds an
outer IP header with specified source and destination
IP addresses, TTL, ToS and protocol number.
We modified IPIP and VXLAN drivers on Linux. In

Linux kernel, the tunneling protocol drivers call the
ip tunnel xmit() function that processes outer IP en-
capsulation, IP routing and transmitting. This function
in the drivers is replaced with the nf2c tx() function
that enqueues a packet to the TX buffer of the NetF-
PGA NIC. Our IPIP driver places IP packets to the
NIC TX buffer directly, and our VXLAN driver places
an Ethernet frame encapsulated in UDP and VXLAN
headers to the buffer through the nf2c tx().
The transmitting performance will suggest an effect

of the offloading per-packet outer IP encapsulation. Thus,
we measured and compared 64-byte packet transmit-
ting performances as shown in Table 1. The experi-
ment platform was Linux kernel 3.16 and Intel Core
i7-3770K CPU. To receive and count transmitted pack-
ets, we used netmap [9]. When IPIP encapsulation is
offloaded, the performance reaches the no encapsula-
tion performance. Our IPIP driver carries transmitting
packets to the NIC via the nf2c tx() immediately af-
ter a few error checks. There is no overhead for the
ip tunnel xmit(). In the case of VXLAN, the offload-
ing also contributes to the performance improvement;
however, the throughput is lower than the no encap-
sulation. The cause of the lack is that the destination
look-up before the nf2c tx() is not offloaded in the
current implementation. As a result, the per-packet en-
capsulation is overhead, and the offloading it on NIC is
a credible way for the performance.

4. SUMMARY AND FUTURE WORK
The per-packet encapsulation of tunneling protocols

is an essential overhead at the end hosts. Our pro-
posed technique enables multiple tunneling protocols in
the OS network stack to offload the destination look-
up and the outer IP encapsulation on a NIC. We have
implemented a prototype NIC using NetFPGA-1G and
measured its performance. The result indicates that
the offloading per-packet outer IP encapsulation on NIC
contributes to the performance improvement. We plan
to implement the whole proposed technique in a FPGA
card with 10-Gigabit Ethernet. Finally, we aim to eval-
uate and discuss the offloading technique in more detail.

2

5. REFERENCES
[1] M. Mahalingam, D. Dutt, K. Duda, P. Agarwal,

L. Kreeger, T. Sridhar, M. Bursell, and C. Wright.
Virtual extensible local area network (vxlan): A
framework for overlaying virtualized layer 2
networks over layer 3 networks. RFC 7348, August
2014.

[2] Pankaj Garg and Yu-Shun Wang. Nvgre: Network
virtualization using generic routing encapsulation.
Internet-Draft
draft-sridharan-virtualization-nvgre-08, April 2015.

[3] Intel. Intel ethernet controller 10 gigabit and 40
gigabit xl710 family.
http://www.intel.com/content/www/us/en/

embedded/products/networking/

ethernet-controller-xl710-family.html.
[4] Mellanox Technologies. Mellanox connectx-3 pro

product brief. http://www.mellanox.com/
related-docs/prod_adapter_cards/PB_

ConnectX-3_Pro_Card_EN.pdf.
[5] Paul Quinn and Uri Elzur. Network service header.

Internet-Draft draft-ietf-sfc-nsh-00, March 2015.

[6] Steven McCanne and Van Jacobson. The bsd
packet filter: A new architecture for user-level
packet capture. In Proceedings of the USENIX
Winter 1993 Conference, USENIX’93, pages 2–2,
Berkeley, CA, USA, 1993. USENIX Association.

[7] Paul Quinn, Rajeev Manur, Lawrence Kreeger,
Darrel Lewis, Fabio Maino, Michael Smith, Puneet
Agarwal, Lucy Yong, Xiaohu Xu, Uri Elzur,
Pankaj Garg, and David Melman. Generic protocol
extension for vxlan. Internet-Draft
draft-ietf-nvo3-vxlan-gpe-00, May 2015.

[8] Jad Naous, Glen Gibb, Sara Bolouki, and Nick
McKeown. Netfpga: Reusable router architecture
for experimental research. In Proceedings of the
ACM Workshop on Programmable Routers for
Extensible Services of Tomorrow, PRESTO ’08,
pages 1–7, New York, NY, USA, 2008. ACM.

[9] Luigi Rizzo and Matteo Landi. Netmap: Memory
mapped access to network devices. In Proceedings
of the ACM SIGCOMM 2011 Conference,
SIGCOMM ’11, pages 422–423, New York, NY,
USA, 2011. ACM.

3

