INTERCEPT+. SDN Support for Live
Migration-based Honeypots

Ayumu Hirata, Daisuke Miyamotb, Masaya NakayamaHiroshi Esaki
* Graduate School of Engineering
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656 JAPAN
ayumu@hongo.wide.ad.jp, hiroshi@wide.ad.jp

fInformation Technology Center
The University of Tokyo
2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8658 JAPAN
daisu-mi@nc.u-tokyo.ac.jp, nakayama@nc.u-tokyo.ac.jp

Abstract—This paper introduces a novel honeypot for web whitelisting; with active whitelisting, the rule set of the WAF
application. Recently, web applications have been the target of describes the exact behavior of the application [7]. Different
numerous cyber attacks. In order to catch up new vulnerabilities from the rule-based methods, heuristics-based methods calcu-
in the applications, using a honeypot system is a feasible solution. |gte the likelihood of being a malicious code and compare the

However, there remains difficulty for developing a lure-able, —jiglinood with the defined discrimination threshold.
protect-able, and deception-able honeypot for web applications.

In this paper, we present an approach in which attackers will Unfortunately, it still remains challenges while preventing
be automatically isolated from the real web server to the honey code injection attacks. The rapid development of web ap-
web server. The key features are employing migration techniques plications arises numerous program bugs, the cause of web
to create a virtual machine as a honey web server, making the y|nerabilities. Building a perfect blacklist is therefore tedious
thhoe”‘raggloéytscie;‘l“'gn;hioz?rr;ﬁng“ﬁg&%’rkat?gﬁimﬁﬁeogg‘r’]'éﬁ)?’v of work. In the case of the whitelisting, the issue is that it requires
in order to isolate honeypots from the real server. This paper WAF operators to maintain rules of the Iegltlmate_ Input and
also shows our design and implementation of INTERCEPT+, a output for.the appl!catlons. The core ISSUe In h.eurlsucs'basfed
component of honeypot systems for web applications. methods is detection accuracy. To achieve higher detection

accuracy, monitoring injection attacks and analysis of them
Keywords—Honeypot, Web application, Live Migration, Open- are necessary.

Flow
Herein, we present a server-type, honeypot systems for

observing web attacks. Theoretically, honeypots are decoy
|. INTRODUCTION systems to gather information regarding an attacker, and have

Web applications have become one of the popular target@ec‘?pt'on and luring capabilities. A honeypot offers some
for cyber attacks. This is due to several reasons: for one, thef"vices that appear perfectly normal to the attackers, and
web applications manage a wide array of information includ/o0ks alike as if the system hasoney e.g., valuable data.
ing financial data, medical records, social security, therefor&Ur motivation is to collect the information related to cyber
attacks aim at stealing the information [1]. Another reasorfttacks toward web applications using the honeypot.
provided by McAfee [2] is the ease of exploitation of web Our developedNTERCEPT+is a component of honeypot
vulnerabilities, combined with the proliferation of low-grade for web applications. INTERCEPT+ is designed for tailoring a
software applications written by inexperienced developershoney web server by creating a perfect copy of the legitimate
According to the report from OWASP [3], web vulnerabilities server with live migration techniques. INTERCEPT+ also
allow a remote attacker to execute injection attacks, e.g., SQbknables to isolate attackers’ traffic with the OpenFlow-based
injection [4] and/or Cross Site Scripting [5] attacks that inputsystem. Since our honeypot has the perfect copy of the real
malicious codes to pose web hijacking, information leakageserver, the pair of media access control (MAC) address and IP
malware infection, and so on. address is the same as that of the real server. In order to avoid
MAC and/or IP address conflicts, INTERCEPT+ induces the

A web application firewall (WAF) is one of the solutions attack packets to the honeypot regardless of the addresses.

against attacks which filters suspicious code injection. Gen
erally, it inspects the application layer so it usually comes We show, by the preliminary evaluation in this paper, that

as an appliance type or as a server module [6]. There areive-Migration technique used in INTERCEPT+ can make

several algorithms for distinguishing suspicious codes fronits perfect copy in short time and it makes almost no data
HTTP request. The one is rule-based filtering, which checksorruption. We also show that our developed OpenFlow-based
the HTTP request with the database of known attack patterngacket forwarder can correctly control the packets from normal
Besides the protection via blacklisting, WAF usually supportsusers and attackers.

TABLE I: Interaction Level P
Interaction low | high "
Actual OS / applications| no yes

Risk low | high Normal Attacker
Operational cost low | high User

Performance low | high

The rest of paper is organized as follows. Section Il briefly ‘OpenFlow
explain related work, and section Ill designs the architecture Controller
of the honeypot for web applications. Section IV and V im- Opsj;‘iti'ﬁw
plement INTERCEPT+, our proposed honeypot aspects from /

the migration-based honeypot and OpenFlow-based packet | / |

forwarder, in respectively. Section VI shows the preliminary
evaluation of INTERCEPT+ and section VII discusses the
missing piece toward the suitable honeypot. We finally sum-

marize our contribution in section VIII. Real Web Tver Honey Web Server

|
II. RELATED WORK))

Honeypot systems can be categorized into four types,
namely (i) high-interaction client-type honeypot, (ii), low- Real Database Honey Database
interaction client-type honeypot, (iii) high-interaction server-
type honeypot, and (iv) low-interaction server-type honeypot.
The type, server or client, means that the honeypot systensg. 1: Concept of High-interaction Server-type Honeypot for
work as server or client computer. The key characteristics ofyeb applications
the interaction was explained in many articles [8]-[10], and
the summary is shown in Table I.

The client-type honeypot systems are used to discover || pgsiGN OFHONEYPOT FOR WEB APPLICATION
new vulnerabilities in the client side systems, such as client

OSes, web browsers and their plugins. The honeypot systems Our grand goal is to develop a novel honeypot system for
usually crawl suspicious web content, allow malicious contentveb applications. In order to discover new vulnerability of web

to exploit the system, and observe the attack methodologiegpplications, honeypot systems facilitate to collect new attack
For examples of the type (i), HoneyClient [11], Capture-methodology.

HPC [12], and Marionette [13] are used to analyze malicious

URLs for bIacI_<Iisting. I_f a system, which was composed' ofp. Requirements

the latest version of Windows, Internet Explorer and plugins,

was compromised while browsing, it can be assumed that Along with our survey described in section Il, we define the

there was new vulnerability in the system and the honeypofollowing abilities that honeypot systems for web application

succeeded to find it. Instead of using the actual systems, ttghould equip.

type (ii) honeypot systems such as Honey-C [14] and Monkey- . .

Spider [15] mimic the client OSes, IP stacks and applications. ® Luring ability

While the attacks target particular applications, it can reduce Due to the nature of honeypot, the system must be
the risk for compromising. However, the observable informa- attractive for attackers.

tion during the attacks tends to be limited in comparison to 4 protection ability

the high-interaction honeypot, as shown in Table I. The system must equip protection capability against

the attacks. Containment must be work for preventing

The server-type honeypot systems aim at obtaining new
yp yb y g the abuse of the systems.

vulnerabilities by monitoring the trials of attack, penetration,
and intrusion. In order to collect these events, the honeypot sys- o« Deception ability

tems need to induce the malicious people to be targeted of the The system must have deception capability, in other
attacks. Since the type (iii) honeypot systems are faced to the words, attackers cannot distinguish that their targeted
risk for compromising, the abilities including containment are system is honeypot.

necessary. Referring to [16], we will explain the requirements

of the honeypot systems. In the case of type (iv), the honeypot In the context of the honeypot systems for web appli-
systems run tools aiming at emulated vulnerable systems. Faations, we decide to employ high-interaction server-type
example, Nepenthes [17] and Deception Toolkit [18] mimichoneypot systems. Since web attacks often require to login
the vulnerable applications. Unfortunately, there are severdb web applications before their execution, the low-interaction
tools [19], [20] for identifying the systems remotely, therefore,honeypots are required to emulate many web applications. It
the attacker are easily aware that their targeted system mmight be tedious, because this task is equal to make the clone
honeypot. of the targeted application.

B. Components TABLE II: Specification of Physical Machines

Our concept of the honeypot system is shown in Figure 1.

Sender PC Receiver PC

In order to meet the luring requirements, it employs the actual CPU | Tniel(R) 77-36100M | Tiel(R) 15-2450M
web applications. A router normally sends to all web requests 2.30 GHz 2.50 GHz

el Memory 8 GB 4 GB
to thde real v(vjebhserver. Howe(;/er, Wlt:en suspicious \r/]vetr)1 requestsb o TTEATA it O AT
are detected, the router sends to the requests to the honey we NIC RealTek RTL.8169 T ReaTek RTL.8160
server. This can meet the protection requirements hence the (Gigabit Ethernet) | (Gigabit Ethernet)

attacks must not be harm to the real web server.

The one of the difficult point is that a honey web SEIVeTis useful. This is just a case, but if there is slight possibility

thSt have the_ same stgtte tﬁ a rﬁﬁl server. In other V‘]ﬁotLdS’ “2) the attack, the router in Figure 1 can forward packets to the
oney servezj!s rethItrr? IO _ave; ¢ € same rlrllemofr.?/ 0 fe reg ney web server. Even if the normal transaction is forwarded

Server regarding to tne login state, as well as files o Wetﬂo the honey server, it must not be lost because the honey server

content including applications. We consider such case that th@an observe the transaction. Due to the honey server has the

attacker are required to login to web applications before the, o rate of the real server, it must not penalize normal users'
attacking. Since the attacker’'s login process is not differen onvenience

to the normal one, this procedure might be done in the real
server. After completing the login procedure, the attacker sends In order to prevent data leakage, it can be considered to
suspicious requests to the web application, and the requesisparate databases for real and honey web servers. The real
are forwarded to the honey web server by the router. To dealatabase has entire tables and records, and the honey database
with such requests for the honey web server, the server mubgs limited tables and records that are related to the user who
know the attacker’s login state as same as the real servdogged in to the web applications. While the honey database
Otherwise, the honey server may return some error messagsBould not contain the records to other users, the risk of data
to the attacker; the attacker can have a chance to be aware lehkage might be thwarted.

that they are quarantined to the honey systems. It cannot meet

the deception requirement. The missing pieces aravoidance of data corruption

and migration in short time periodThis paper also discusses
In order to meet the deception requirement, we decided ton development of the system in corresponding to these two

experiment with migration techniques. They enable a virtuaproblems.

machine to be physically moved from one physical machine

to another in a transparent way [21]. It also enables to create |\ | MPLEMENTATION OF LIVE MIGRATION-BASED

the complete memory and storage copy of the real web server. HONEYPOT

~ Another one of the difficult points is address duplication. |, oy study, we setup Ubuntu 13.04, Kernel-based Virtual
Since the migrated virtual machine has the same MAC anqachine modules to two physical machines; their specifica-
IP address of the real server, it must be considered for thgys are shown in Table Il. We have modified QEMU [22]
way of forwarding suspicious web requests to our proposegqrce codes. Due to the nature of migration techniques, a
honeypot. Generally, a network router (L3 router) decides nextyigration-source VM will power off to prevent a possible data
hop for each packet regarding to the destination IP address, ap@rryption. Whenever our implement continues to run a source

a.network switch (L2 switch) finally decide; the destinationy/\1 after migration, both suppression of the state change in
with the MAC address. Therefore, the conflicts of IP and/orye v\ and prevention of the data corruption are necessary.
MAC address causes that the suspicious web requests are not

delivered to the honeypot. In order to keep source VM running after migration, we

. . modified the state of source VM will be changed when vm
Instead of the traditional network routers/switches, we

. . stop force state() and runstatset() are called via
decide to employ a Software-Defined Network (SDN) ar-migration c. It works fine, so the rest of problem is the data
chitecture which enables flexible traffic management. W'th"gorruption
the architecture, packet forwarding decisions are controlle)
by the OpenFlow protocol; an OpenFlow Switch (OFS) asks At first, we used Full Live Block Migration (FLBM) for
OpenFlow Controller (OFC) to deal with any packets when thepreventing data corruption. FLBM supports the entire disk
OFS attempts to forward the packets. An OFC is an applicatiosopying, therefore, the source VM and destination VM have
that manages flow control and dictates how the OFS handleespectively their own virtual disk images. It enables that the
matching packets. As shown in Figure 1, the network switchesource and destination VM have the same content in entire
behind the host OSes of both the real and honey web servemsemory and block devices as well as avoiding data corruption.
should be capable to the OpenFlow protocol and work as ahlowever, FLBM requires a lot of time due to the copying
OFS. For benign requests, the OFS sends them to the real wélll disk images during migration procedure. It might not be
server. Oppositely, the OFS forwards a request to the honegood solution for honeypot, because an attacker would feel
web server whenever the request seems to be suspicious. something is not normal.

There still remains such problems thdétermination of Different from FLBM, it was feasible to use of Incremental
suspicious requestsprevention of data leakageavoidance Live Block Migration (ILBM). In the “incremental” mode,
of data corruption and migration in short time periodFor only the blocks that were modified are migrated. QEMU'’s disk
identifying suspicious requests, the likelihood of being animage utility supports to create a snapshot image file. Instead
attack, which can be calculated by the heuristics-based WARf FLBM, ILBM can dramatically reduce the time during live

migration, but it still needs couple of time; it can be assumeddlgorithm 1 Pseudo Code of the OpenFlow-based Packet
that these times are required for verifying disk consistency anfforwarder
for memory migration. for all packetsdo
Read the list of suspicious IP addresses
if incoming packets from Internéhen
if the source IP address is listédten
Send signals to finish live migration
Forward the packet to the honey web server

In order to reduce the time for verifying disk consistency,
we tested LiveBackup [23] and DriveBackup [24]; the former
enables the destination VM periodically polls the source VMs
to the data which might be backup, and the latter enables to
push the data from the source VM to the destination VM.

. else
However, these tools are designed for backup, due to that they
only work when the source VM is surely powered off. If the engoi;ward the packet to the real web server

source VM kept running, we confirmed that the data corruption

or critical system failure occurred. else if outgoing packets from the real web sertieen

if the destination IP address is listdten

Instead of using backup tools, we observed that combina- Discard the packet
tion of NFS and advanced multi layered unification filesys- else
tem(AUFS) [25] worked fine. AUFS is a implementation Forward the packet to the Internet
of Union File Systems, which provides the function, called end if
branch, to unite several directories into a single virtual filesys- else ifoutgoing packets from the honey web serthen
tem. Based on the solution, we conducted our experiment as if the destination IP address is listdten
follows. Forward the packet to the Internet
else
1) Setup snapshot image files Discard the packet
In order to reduce the further copy-on-write process, end if

we decided to use snapshot. Besides to this, the source end if
physical machine (PM) and the destination PM have the end for
same base image file for the snapshot image file, and
use the base image file to the same directory path in the

physical machine. For example, if the destination PM puts TABLE lII: Specification of Physical Machines
the base image file introot directory, the source PM T
also puts the base image file iftwot . =55 el Gore T/ 36320M
2) Sharing snapshot 2.20 GHz
The source PM creates the snapshot and place the file MSEEW 5ooBGGBBATA
into NFS server. The destination PM mounts the the NIC | RealTek RTLEI11/8168/8411
NFS server as a read only file systems, and configure (Gigabit Ethernet)

AUFS directory. For example, a NFS server expdmfs

directory and the destination PM mounts the place as a))
read-only file system, e.gronfs . The PM then mounts suspended. After the receiver VM starts, the sender disables

Infs as an AUFS system, in whichonfs is a read the fault tolerant feature and stops the sender VM by calling
only directory and any other directory, e.gtmp is a vm_stop(0) from migrate_ft_trans_error() func-
writable directory. tion in migration.c . As we mentioned above, we comment
out thevm_stop() function not to power-off the VM. In
Instead of ILBM, this methodology employs copy-on-write addition, we also modify the receiver for remotely starting the
to keep consistency of the VM disk image files betweenVM. Instead of inputting command in the receiver's console,
the source and destination VMs. We observed that the copyNTERCEPT+ accepts the signal for launching the VM, as
on-write process will be started after the memory migrationshown in Figure 2b.
finished.

Finally, we employ Kemari [26] for reducing the time for
memory migration. Kemari provides the feature of the fault
tolerance for KVM, and makes the memory migration to be This section demonstrates our implementation of
done in the background. The feature also enables the reducti@penFlow-based packet forwarder. We installed the functions
of the time for migrating memory in INTERCEPT+. of OFC and OFS to one PC, its specification is shown in
Therefore, our prototype implementation is developed byTabIe lll. We chose RYU [27], a python framework for OFC,
modifying thé latest version of Kemari. The figure 2 demon-to develop our implementation as an OpenFlow application.

: We also selected Open vSwitch [28] for OFS. The OpenFlow

fércaeti?/se’zrr{?l\\;lvs”'\ll'geEEgnEcjzrt P,Nc;?é; Ig;cme)sfﬂgsermingmtgepc has three network interface cards. One is used for the
Lo pnys Bxternal connection, one is for connecting to the real web
shown in Figure 2a and the receiver also runs the VM as showg

in Figure 2b with enabling Kemari's fault tolerant feature. erver and the other is for the honeypot web server.

The sender also starts the fault tolerant migration via sender's The pseudo code of our implementation is shown in
QEMU monitor console with specifying the IP address of theAlgorithm 1. As we described in section Ill, it usually for-
receiver. In the case of Kemari, the sender VM still runs aftewards all packets from the Internet to the real web server.
finishing migration; the receiver VM does not start, but isBesides, all packets from the real server are also forwarded

V. |IMPLEMENTATION OF THE OPENFLOW-BASED PACKET
FORWARDER

.Jgemu-system-x86_64

-drive file=/nfs/debian-kvm001.qcow?2,if=virtio
-boot d -enable-kvm -monitor stdio -vnc :0
-incoming kemari:tcp:0:4444

kill -256 (pid)

./gemu-system-x86_64

-drive file=/nfs/debian-kvm001.qcow2,if=virtio
-boot d -enable-kvm -monitor stdio -vnc :0
(gemu) migrate -d kemari:tcp:192.168.1.2:4444

(@) Sender (192.168.1.1) (b) Receiver (192.168.1.2)

Fig. 2: Demonstration of INTERCEPT+ system

to the Internet. To implement these functions, the forwardeFigure 3a, 3b, 3c, and 3d, wherexis denotes three cases, and
checks the list of suspicious IP addresses for each packej.axis denotes the turn around time while creating honeypot.
If the source IP address of the packet was listed, the pack&tote that ourr axis range for each box graph is limited to the
would be forwarded to the honey web server. Oppositely, th€0 seconds, for readability.

implementation continues to work as usual. When the disk size was 20 MB, we observed that the min-

We considered such case that the suspicious packets couldum average of the turn around time was 2.00 seconds in the
be detected. The OpenFlow-based packet forwarder immedgase of INTERCEPT+, followed by LMM with AUFS (11.72)
ately ran OS commands for sending signals on the host OS @ind finally ILBM (14.90). In order to compare the responses
the honey web server, in order to prepare the honey web servén a less biased way, we performed Analysis of Variance
It then forwarded all packets with suspicious source IP addreS®ANOVA) and Welch's t-test f < 0.05) for INTERCEPT+
from the Internet to the honey web server, after live migrationand ILBM, and the result showed that there was statistical
was finished. This implementation was also designed to isolatdifference between the two turn around times in between IN-
the real server from the attacker. It discarded all packets witTERCEPT+ and ILBM p = 1.40F — 32(< 0.05),v = 18). In
the suspicious destination IP address from the real web servaddition to the INTERCEPT+ and LMM with AUFS, there also
to the Internet. In the case of outgoing packets from the honefound statistical differencep(= 7.62E — 33(< 0.05), v = 18).

web server, the forwarder did oppositely. Even if the disk size was 500 MB, the minimum average

In addition to that, the forwarder also needed to retrieve thef the turn around time was 43.23 seconds in the case of
list of the suspicious IP addresses. Our implementation sSimpiNTERCEPT+, followed by LMM with AUFS (53.22) and

read a file for retrieving the address list. finally ILBM (56.51). According to our ANOVA results, we
performed Student’s t-tesp (< 0.05) for INTERCEPT+ and
VI. EVALUATION ILBM and found the statistical difference & 3.78E — 16(<

0.05),» = 11.86). There was also statistical difference be-
This section provides our evaluation results. Section VI-Atween INTERCEPT+ and LLM with AUFS(= 4.00E—23(<
shows the performance of the migration-based honeypot, ar@o5), v = 18).

section VI-B analyzes the latency of the OpenFlow-based . .
packet forwarder. 4 y P We also verified whether or not the data corruption oc-

curred, and observed that there was no data corruption in
)) . all cases. Aspect from these observations, INTERCEPT+
A. Live Migration-based honeypot succeeded to meet our requirementsvoidance of data

The requirements of the INTERCEPT weagoidance of corruption and migration in short time periodHowever, we
data corruptionandmigration in short time periodThe section /S0 found that the turn around time increases if the snapshot
show the detail conditions of the preliminary evaluation infilé Size became bigger. We will discuss this problem in
which we used two physical machines as shown in Table 11, S€ction VII-B.

This evaluation employed three stra_tegies for Ia_unchinq& OpenFlow-based packet forwarder
a honey server, namely Incremental Live Block Migration
(ILBM), Live Memory Migration (LMM) with using AUFS In this section we performed the results of our preliminary
for copying block devices, and INTERCEPT+, our modified evaluation. We analyzed the latency of the OpenFlow-based
version of Kemari with AUFS. We also prepared four typesforwarder system.

of snapshot images, whose size were 20, 50, 100, and 500 p h K h | situati
Negasytes (NB) in respecively. Note that 20 WS s the, 1418 served e pecker e e orme Stuten
minimum size for the snapshot image file in our experlment.is detected as an attacker, we observed the packets. The VM
Based on the above conditions, we measured the timmigration takes place just when the first packet from 10.0.0.1
for launching virtual machines. For the cases of LMM with arrived. Then the signal is sent to the honeypot and packets
AUFS and INTERCEPT+, we compared the timestamp of thdrom the attacker is sent to the honeypot server. On both
shapshot images created by copy-on-write with the time whiclsituation, we dumped packets at the client’s side. This is
started the migration. As for the case of ILBM, we manuallybecause we needed to know whether this honeypot system has
measured the turn around time by calculating from the startedbility to hide themselves from attackers, who is at client’s
time and the completed time. The results are summarized iside. Of course, we verified that normal users can access to the

8 g | le)
—
3 ——— 3
——
o o _|
- —
Te] n — +
o o -
I I I I I I
ILBM LMM+AUFS INTERCEPT+ ILBM LMM+AUFS INTERCEPT+
(a) 20MB Snapshot (b) 50MB Snapshot
& 8
— —
& B
——————— | E"ﬁ
3 8
o o _|
— <
e —
1o} S
I I I I I I
ILBM LMM+AUFS INTERCEPT+ ILBM LMM+AUFS INTERCEPT+
(c) 100MB Snapshot (d) 500MB Snapshot

Fig. 3: The average turn around time in the cases of Incremental Live Brock Migration(ILBM), Live Memory Migration with
AUFS (LMM+AUFS), and Kemari-based Live Memory Migration with AUFS (INTERCEPT+).

real web server simultaneously even when the attacker existatency.
and is directed to the honeypot.

The packet dumps taken by Wireshark [29] are shown in VII. DISCUSSION
Figure 4. As shown in the figure, these two situation mad% Collection of attacks
almost no difference. The first row from the left shows the time™™
the packets were observed. The value 0 stands for the sending our motivation is to collect the information related to
time of first TCP SYN packet. The second and third rows argyher attacks toward web applications using the honeypot. This
the source and destination IP address respectively. The fourfpction explains about the content of the information.
is protocol. The packets for the TCP three way handshake are
TCP, and other packets related to HTTP protocol are shown As shown in Figure 1, our concept contains detecting a
as HTTP. The last row is the packet information. It shows thesuspicious request, creating a honey web server, preparing
SYN, ACK flags about the TCP, while HTTP methods abouthoney database, forwarding the request to the created server,
the HTTP packets. and observing the behavior. Imagine if the request can be

detected attacks without doubt. When the attack was well

As a result, this system can correctly control the attackknown and contained particular phrases that cause injection
traffic to the honeypot web server, and causes almost nattacks, the rule-based detection can identify that the request

TIME Source IP | Destination IP | Protocol Information TIME Source IP | Destination IP | Protocol Information
0 10.0.0.1 172.16.0.10 TCP [SYN] 0 10.0.0.1 172.16.0.10 TCP [SYN]
0.0178 | 172.16.0.10 10.0.0.1 TCP [SYN, ACK] 0.0242 | 172.16.0.10 10.0.0.1 TCP [SYN, ACK]
0.0179 10.0.0.1 172.16.0.10 TCP [ACK] 0.0243 10.0.0.1 172.16.0.10 TCP [ACK]
0.0180 10.0.0.1 172.16.0.10 HTTP GET HTTP/1.1 0.0243 10.0.0.1 172.16.0.10 HTTP GET HTTP/1.1
0.0308 | 172.16.0.10 10.0.0.1 TCP [ACK] 0.0364 | 172.16.0.10 10.0.0.1 TCP [ACK]

(a) Normal Packets (b) Attack Packets

Fig. 4. Packets dumps at client’s side

is determinately attack. In this case, the information of theand the snapshot, might be necessary to keep the size of the
attack is not so new. snapshot to be reasonable.

Aside from the well known attacks, we want to analyze The other solution is that use of rapid migration techniques.
suspicious attacks with honeypot. As we mentioned in secNTERCEPT+ needs to replicate the VM instance rather
tion I, heuristics-based methods calculate the likelihood othan migration, so we need to carefully choose the suitable
being a malicious code and compare the likelihood with theaechniques to avoid data corruption. As well as as Kemari's
defined discrimination threshold. Assuming if the calculatedfault tolerant functions, which do memory migration in the
score0) means benign antl means attacks, and saves is the background manner, the fault tolerant functions for block disk
threshold. For example, given calculated score (> 0.5), image might be feasible. Actually, cloud storage techniques
it would be detected as attack rather than benign. Howevesuch as GlusterFS [30] and/or Sheepdog [31] have the fault
even if the calculated score &1, it might contain some tolerant features and replicate the disk images in the storage
suspiciousness. By observing the activity during the requeshetwork. By modifying their replication functions, there is
we considered that there is a potential chance for collectingossibility for creating the perfect copy of VMs in very short
new cyber threats. time period even if the disk size is large.

Due to the fear of false positive, which is to label benign Toward development of honeypot for web applications,
request as attack, a suspicious request might not be blockelNTERCEPT+ needs to interconnect to other modules, namely
Instead, our approach seamlessly quarantines the suspiciodstermination modules for suspicious requests. On the inte-
request to the honey web server. Even if the false positivgration of INTERCEPT+ and the remaining module, it needs
occurred, the service for the benign user of the web applicatioto define the temporal requirements. The required time for
would be continued without losing any convenience wherdetection, direction and preparation of honeypot might be
following two conditions are met: (i) the honey web servercalculated along with each requirement, but it is beyond the
has the same memory and disk information of the real servescope of this paper.
and (ii) the honey database equips the information that used
by this benign user. If the honey database has limited tables
and records that are related to the user who logged in to the- Control of packets
web applications, as we explained in section Ill, INTERCEPT+
might not penalize users’ convenience even if the false positiv
error occurred.

In this section, we discuss remaining issues of the
%penFIow-based packet forwarder. As we mentioned in sec-
tion 111, all IP packets are controlled by the OpenFlow protocol.
The packets of other protocols such as Address Resolution
Protocol (ARP) are treated as follows in this implementation.
ARP packets from the external connection is sent to both the
This section explains about deception ability. We developedeal and honey server and ARP packets from the real’honey
INTERCEPT+ to create a perfect copy of environment for webserver are forwarded to the external connection. This may
applications based on virtualization techniques. To the best afccur conflicts. This makes a possibility that an attacker can
our knowledge, it would be difficult that honey web serverbe aware of something unusual.
has the same memory of the real web server, including TCP

session state and web application session information, without 1€ other issue is caused of our isolation. Since the honey
using VM. web server is isolated to the real web server and its surrounding

systems, and hence, this leads an attacker to feel different.

The remain issue is time for creating the copy of VMs. If Even if the attacker intends to use this web server as a step

it requires a lot of times, remote attackers will be aware ofstone of other attacks, our isolation prohibits the attacker to
unusual or strange behavior of the web servers. launch another attack from the isolated server.

B. Deception ability

Our INTERCEPT+ was designed to reduce the time for The way for dealing with these problems are beyond
migration; use of Kemari and its fault tolerant feature to reducehe work of this paper. In these problems, we assumed that
the time for memory migration, and use of AUFS and its copy-the attacker can successfully gain control for injecting OS
on-write feature for live block migration. The rest of time is the commands. In this case, it can be regarded that the honeypot
time for copy-on-write in AUFS. The creation time increasesusually has already finished its role. From the viewpoint of
when the size of the snapshot disk image file becomes largesollecting new vulnerabilities in web applications, these issue
The periodical “re-basing”, the procedure of merging the basavere not critical to meet with deception ability.

VIII.

The paper introduced INTERCEPT+, a component of the
honeypot for web applications. To meet the requirements of
the honeypot, we explored the suitable solution and discovereds]
the missing piece, which can avoid the data corruption as
well as finishing the migration in short time period. While
we employed server-type and high-interaction as a honeypot
architecture, the honeypot system created the perfect copy o
the actual system. Hence the honeypot had the same memo
and disk content of the actual system, web attackers would not
be aware of that they were forwarded to honeypot even they
checked any TCP and/or web sessions. [8]

C ONCLUSION [5]

7]

We also surveyed several solutions of virtual machine
environments and developed our own virtual machine systemsig;
At first, we chose QEMU and modified its source codes,
and used the incremental live block migration for creating
honey web server. Next, we employed AUFS instead of usingLo]
incremental live block migration in order to reduce the time for
completing live block migration. Further, we modified Kemari
and its fault tolerance feature, to reduce the time of the memori}1]
migration. We also observed that the creation of the honei2]
web server could be done in few seconds when the size of the
shapshot was reasonable. [13]

We finally implemented an OpenFlow-based packet for-
warder. Even if our live migration approach arose address
duplication, we verified that our implementation could forward[14]
the packet to the suitable destination regardless of the dupli-
cated address. We also evaluated its performance and measured
the effectiveness. The result showed that we could correctl A5)
control the attack and normal packets to our honeypot system.

The rest of work is to improve the performance of our [16]
developed INTERCEPT+. There still remains the problem,
i.e., the difference of the temporal requirements, but we willl17]
develop the suitable honeypot for web applications regarding
to the rapid migration techniques in our future work.

[18]
ACKNOWLEDGMENT

This research has been supported by the Strategic Intern3>!
tional Collaborative R&D Promotion Project of the Ministry of [20]
Internal Affairs and Communication, Japan, and by the Euro-
pean Union Seventh Framework Programme (FP7/2007-201§31]
under grant agreement No. 608533 (NECOMA). The opinions
expressed in this paper are those of the authors and do not
necessarily reflect the views of the Ministry of Internal Affairs [22]
and Communications, Japan, or of the European Commission.

REFERENCES (23]
[1] J. Purcell, “Web Based Attacks,” Available at: http://www.sans.org/
reading-room/whitepapers/application/web-based-attacks-2053, Thf‘24]

SANS Institute, Tech. Rep., 2007.

M. Andrews, “Web Security 101 - introduction,” Available at: http://
www.mcafee.com/in/resources/audio/foundstone/websec101-intro.htm
McAfee, Tech. Rep., 2008.

OWASP, “OWASP Top 10 for 2013 - The Ten Most Critical Web Ap-
plication Security Risks,” The Open Web Application Security Projec
Tech. Rep., 2013.

S. McDonald, “SQL Injection: Modes of Attack, Defence, and Why It [27]
Matters,” Available at: http://www.sans.org/reading-room/whitepapers/
securecode/sgl-injection-modes-attack-defence-matters-23, The SANRS]
Institute, Tech. Rep., Apr 2002.

2]
tos)

3
. [26]

(4]

S. Cook, “A Web Developer’s Guide to Cross Site Scripting,” Available
at: http://www.sans.org/reading-room/whitepapers/securecode/
web-developers-guide-cross-site-scripting-988, The SANS Institute,
Tech. Rep., Jan 2003.

. M. Kim, “Using Web Application Firewall to detect
and block common web application attacks,” Available
at: http://www.sans.org/reading-room/whitepapers/webservers/

web-application-firewall-detect-block-common-web-application-attacks- 3383

The SANS Institute, Tech. Rep., Nov 2011.

M. Dermann, M. Dziadzka, B. Hemkemeier, A. Hoffmann, A. Meisel,
M. Rohr, and T. Schreiber, “Best Practices: Use of Web Application
Firewalls,” The Open Web Application Security Project, Tech. Rep.,
2008.

A. Mairh, D. Barik, K. Verma, and D. Jena, “Honeypot in Network
Security - A Survey,” inProceedngs of the International Conference
on Communication, Computing & Securitpct 2011, pp. 600-605.

F. Pouget and T. Holz, “A Pointillist Approach for Comparing Honey-
pots,” in IEEE Conference on Detection of Intrusions and Malware &
Vulnerability Assessmeniul 2005.

K. Lin, L. Kyaw, and P. Gyi, “Hybrid Honeypot System for Network
Security,” World Academy of Science, Engineering and Technglogy
vol. 24, pp. 266-270, 2008.

MITRE, “Honeyclient Project.”

The Client Honeynet Project, “Capture-HPC,” Avaiable at: http://
client-honeynet.org/.

M. Akiyama, M. lwamura, Y. Kawakoya, K. Aoki, and M. Itoh, “Design
and Implementation of High Interaction Client Honeypot for Drive-by-
Download Attacks,"IEICE Transactionsvol. 93, no. B(5), pp. 1131
1139, 2010.

C. Seifert, I. Welch, and P. Komisarczuk, “HoneyC-The Low-Interaction
Client Honeypot,” Available at http://www.mcs.vuw.ac.nz/cseifert/blog/
images/seifert-honeyc.pdf, Victoria University of Wellington, Tech.
Rep., 2006.

The Monkey-Spider project, “Monkey-Spider,” Availabel at: http://
monkeyspider.sourceforge.net/.

L. Spitzner,Honeypots: Tracking Hackerdst ed.
2002.

P. Baecher, M. Koetter, T. Holz, and M. Dornseif, “The Nepenthes
Platform: An Efficient Approach to Collect Malware,” iRroceedings

of the 9th International Symposium On Recent Advances In Intrusion
Detection Sep 2006.

F. Cohen, “Deception Toolkit,” Available at: http://www.all.net/dtk/
index.html.

Nmap, “Free security scanner for network exploration & security
audits,” Available at: http://nmap.org/.

M. Zalewski, “pOf,” Available at: http://lcamtuf.coredump.cx/pOf.shtml.

C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,
I. Pratt, and A. Warfield, “Live Migration of Virtual Machines,” in
Proceedings of the 2nd Symposium on Networked Systems Design and
ImplementationMay 2005.

F. Bellard, “QEMU, a Fast and Portable Dynamic Translator,” in
Proceedings of the USENIX Annual Technical Conferedqe 2005,
pp. 41-46.

J. Sundar, “Livebackup - A Complete Solution for making Full and
Incremental Disk Backups of Running VMs,” Available at: http://wiki.
gemu.org/Features/Livebackup.

K. Wolf, “block: drive-backup live backup command,” Available
at: http://lists.nongnu.org/archive/html/gemu-devel/2013-06/msg04448.
html.

J. R. Okajima, “Advanced multi layered unification filesystem,” Avail-
able at: http://aufs.sourceforge.net.

K. Ohmura and S. Moriai, “Kemari Project,” Available at: http://www.
osrg.net/kemari/.

Nippon Telegraph and Telephone Corporation, “Ryu Network Operating
System,” Available at: http://osrg.github.com/ryu, 2012.

Open vSwitch, “Production Quality, Multilayer Open Virtual Switch,”
Available at: http://openvswitch.org.

Addison Wesley,

[29] G. Combs, “Wireshark, Go Deep,” Available at: https://www.wireshark. [31] Sheepdog Project, “Sheepdog Project,” Available at: http://sheepdog.
org/about.html, 2006. github.io/sheepdog.

[30] Gluster, Inc., “GlusterFS,” Available at: http://www.gluster.org.

