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Abstract—Various overlay networks have been proposed and
developed to increase flexibility on networks to address issues
of the IP network. However, the existing overlay networks have
two problems: 1) the topology of existing overlays is essentially
full-mesh tunneling topology, 2) dependence of control plane and
data plane. The full-mesh tunneling topology cannot enable the
overlay routing for performance improvement of networks. The
dependence of them causes complication of operations due to the
isolation of overlay networks, and increases development costs.
To improve the problems, we propose a new abstraction layer
provides a common architecture for data planes of overlay net-
works that can deploy overlay routing. Based on the architecture,
we design and implement a protocol stack, called ovstack. In this
paper, we describe the architecture, design and implementation,
then evaluate the performance of overlays including ovstack.
The ovstack can contribute to construct more flexible overlay
networks on the current networks easily.

I. INTRODUCTION

Various applications communicate via an IP network. Every
application has its own requirements on networks, such as
bandwidth, latency, stability, availability, and operability. For
example, e-commerce requires low latency networks [1], and
voice communication systems require networks to be low jit-
ter [2]. Furthermore, in Infrastructure as a Service (IaaS) model
cloud environments, multi-tenancy for separating networks for
each user and prefix mobility are required.

To satisfy various requirements, existing networks con-
structed by IP and Ethernet lack flexibility. As problems of
IP, decoupling location and identification, multi-homing, mo-
bility, simplified renumbering, modularity, and routing quality
are remarked in RFC6227 [3]. Some problems of them are
attributed to semantics of IP address structure. An IP address
block is a part of larger address block. Through this semantics,
IP address blocks are assigned to Internet Service Providers
(ISP). This scheme provides aggregation of routes in Default
Free Zone (DFZ), and it helps compression of global routing
table on DFZ. However, this scheme causes coupling of locator
information and identification information of IP. Thus, an
end node cannot be moved to other networks remaining IP
address of a former network. In addition, IP does not have
an identifier that denotes a network, thereby multi-tenancy is
not be achieved in IP layer. Hence, routing quality that means
network multi-tenancy for requirements cannot be realized in
existing IP layer.

To increase the flexibility of networks, overlay networks
have been proposed and developed [4], [5], [6], [7], [8]. Some
functions achieved by overlays are also utilized for Software

Defined Network (SDN). Overlay technologies construct their
own networks over the IP network by encapsulating packets
with their protocol headers in IP datagrams. This encapsulation
enables to add network functionalities to the overlay networks
corresponding to the requirements of an application. For ex-
ample, Virtual eXtensible LAN (VXLAN) [4] encapsulates
Ethernet frame with IP, UDP, and VXLN header. VXLAN
enables multi-tenancy that is able to separate network up to
1,677,216 segments by introducing new identifier in VXLAN
header. In addition, Locator/ID Separation Protocol (LISP) [5]
encapsulates IP datagram with IP, UDP, and LISP header. LISP
separates two aspects of IP, that are identifier and locator
by introducing IP encapsulation, thereby it achieves prefix
mobility and multi-homing. Moreover, some other overlays
achieve multicast communication in overlay networks [7], [8].

However, the architecture of existing overlay technologies
has two problems. First problem is that the topology of existing
overlays is essentially full-mesh tunneling topology. Hence,
a path between two overlay nodes follows the path of IP
layer. In consequence, it is not possible to build routing
overlays without being tied to the routing table of IP layer.
Second problem is dependence of control plane and data plane.
Existing overlay technologies are specialized in each upper
application, and system architectures of control and data plane
are interdependent. Thus, overlay networks that are built by
each overlay technology are completely independent, which
causes complication of network operations and increases of
development costs: when developing a new overlay technology,
it is necessary to design and develop both of control and data
plane.

In this paper, we introduce a new abstraction layer for
overlay networks in the network layering model. And we
design and implement a protocol stack of common data plane
for overlay networks. The proposed protocol stack, called
ovstack, offers common functions of the data plane, that are
proper header format, node ID on the overlay network space,
the routing table for overlay networks, packet routing and
forwarding based on the routing table, and API to be controlled
from control plane. Thanks to the ovstack, operators do not
have to build their own overlay networks independently, as
building IP networks. Furthermore, developers only design a
control plane to create a new overlay technology, by utilizing
ovstack.

Our contributions of this paper include:

• Introducing a new abstraction layer for various overlay
networks in the network layering model.



• The design and implementation of ovstack, a frame-
work that provides a protocol stack of data plane for
the abstraction layer in Linux kernel.

The paper is organized as follows: we present character-
istics of existing overlays, and define problems in Section
II. Section III describes requirements and proposed system,
and implementation of ovstack is shown in Section IV. Sec-
tion V shows evaluation environments and its result about
performance of ovstack as a data plane. Finally, Section VI
summarizes the results of this study, and refers future work.

II. EXISTING OVERLAYS

In this section, we summarize characteristics of existing
overlays, and present problems of the existing overlay models.

A. Locator/ID Separation Protocol

Locator/ID Separation Protocol (LISP) is an IP over IP
overlay network architecture and protocol. LISP manages two
aspects of the IP address, addressing and locator, in isolation.
By introducing this isolation, LISP enables prefix mobility and
multi-homing. In LISP, an IP prefix is called Edge ID (EID),
and a LISP router that accommodates EIDs is called Ingress or
Egress Tunnel Router (xTR). xTRs of a LISP network manages
map table that is constructed from entries of EID and the
Routing Locator (RLOC) that is IPv4 or IPv6 address of xTR.
xTR forwards IP datagram with IP encapsulation to other xTR
in accordance with the map table.

Providing multiple xTRs for an EID enables that multi-
homing of the EID prefix. In IP layer, it is necessary to inter-
AS connectivity through eBGP to realize multi-homing for a
prefix. In contrast, LISP can achieve multi-homing for EIDs
easily by multiple xTRs. Moreover, the relation between EID
and RLOC does not have particular semantics like IP netmask.
Thus arbitrary EIDs can be accommodated by arbitrary xTRs.
It enables that prefix mobility in a LISP overlay network.
Furthermore, by using an IP address of end host as a EID,
LISP achieves host scale address mobility.

The LISP map protocol is defined as a control plane
of the LISP overlay network. The control plane of LISP is
constructed from LISP Alternative Logical Topology (LISP-
ALT) based on BGP [9]. xTRs constructs routing table of the
overlay network from exchanging map table information using
LISP-ALT. Thus, xTRs are able to route and forward packets
in accordance with overlay routing table.

B. Virtual eXtensible LAN

Virtual eXtensible LAN (VXLAN) achieves Ethernet em-
ulation over IP network. In VXLAN, new 24 bits identifier
is added into VXLAN header when the Ethernet frame is
encapsulated. By adding this identifier that is named VXLAN
Network Identifier, VXLAN is able to isolate enough number
of network segments. The control plane of VXLAN is that the
unicast frame is encapsulated with IP unicast, and unknown
unicast, broadcast and multicast frames are encapsulated with
IP multicast. Because using IP multicast, VXLAN nodes
(VTEP) can join the VXLAN overlay network without particu-
lar control plane protocol. Thus, the header format of VXLAN
is simple to include only some flags and VNI.

The VTEP manages Forwarding Data Base (FDB) that
is constructed from pairs of MAC address and IP address
of VTEP. This procedure is described below. When a VTEP
receives an Ethernet frame, it finds FDB entry in accordance
with destination MAC address of the frame. If the entry does
not exist, VTEP transmits the packet with encapsulation to
the given IP multicast address. If the entry is found, VTEP
transmits the packet with encapsulation to the IP address that
is contained in the found entry. Thus, all of VTEPs joining
the IP multicast address can receive broadcast frames. When
a VTEP receives an encapsulated packet from the overlay,
register a pair of source MAC address of inner Ethernet header
and source IP address of outer IP header. Thereby, VXLAN
constructs FDB for the overlay network with flooding utilizing
IP multicast and inner source MAC and outer source IP address
snooping.

C. Resilient Overlay Network

Resilient Overlay Network (RON) [6] is an overlay network
that achieves improvement of network performance such as
throughput and delay by utilizing the multihop overlay routing.
RON nodes have unique identifier for each node in RON
overlay network, and construct overlay routing table to realize
the multihop routing overlay. In LISP and VXLAN, the path of
encapsulated packets is end-to-end between overlay nodes in
accordance with IP routing table. By contrast, in RON, relaying
other nodes in the overlay network enables selection of better
path between RON nodes without being tied to the routing
table of IP layer.

Existing overlays such as LISP and VXLAN transmit pack-
ets through end-to-end path in IP layer. On the other hand, rout-
ing overlays such as RON and Scribe [7] that enables multicast
routing in overlay network, constructs overlay routing table
using identifier on the overlay network apart from IP routing
table. By selecting better quality paths when constructing the
overlay routing table, routing overlays achieves to improve
the performance of network. To achieve the routing overlays,
the RON node adds destination and source node identifiers to
encapsulation header.

D. Problem Definition

To satisfy requirements, there are many overlay technolo-
gies. Each overlay achieves each function such as multi-
homing, mobility, multi-tenancy by encapsulation, and perfor-
mance improvement or multicast communication by routing
overlays. However, there are two problems by individual
technologies are dedicated to specific requirements.

1) Full-mesh Tunneling Topology: First problem is, the
topology of most existing overlay technologies is essentially
full-mesh tunneling topology. In existing overlays like IP
tunneling, LISP and VXLAN, a path between overlay nodes is
end-to-end in accordance with IP routing. Thus, performance
improvement through relaying nodes in overlay paths cannot
be achieved. If realizing routing overlays with tunneling over-
lay technologies, the overhead of re-encapsulation occurs in
relay nodes: Relay nodes decapsulate packets from a overlay
link at first, routing on basis of inner packet data, and encap-
sulate packets again to transmit.



In VXLAN, a VTEP transmits Ethernet frames with IP
encapsulation to an IP address that is contained in FDB. Thus,
paths between VTEPs are same as paths of IP layer: the overlay
topology between more than two VTEPs is same as full-
mesh tunneling topology. LISP also constructs same overlay
topology. The xTR finds a destination locator address from
map table using a destination IP address of received IP packets
from edge networks, and transmits encapsulated packets to the
destination xTR via an IP network. Because existing overlay
technologies does not have unique node identifier in overlay
networks, they cannot build the routing overlays without being
tied to the IP routing table.

The cause of the problem is that it is not intended that
these technologies have the purpose of routing in the overlay
network. For that reason, headers of LISP and VXLAN do
not contain node identifier on each overlay network. Instead
of overlay routing, they achieves various functions such as
address mobility and multi-tenancy without complex header
formats and control planes. On the other hand, to respond to
requirements about the network performance, node identifier
and multihop overlay routing like RON is needed.

2) Dependence of Control Plane and Data Plane: Second
problem is, the dependence of control plane and data plane.
IP tunneling technologies do not have control plane, because
tunnel end points are certain given by configuration. LISP
utilizes map protocols as control plane, so that data plane
(e.g., header formats and routing table) has particular formats
specified to LISP map protocol, and control plane has also
specific field for the data plane; therefore, the control plane
and data plane of LISP cannot be utilized from other over-
lay network technologies reciprocally. Other existing overlay
technologies are similar to that. The header format of RON
has some specific fields such as policy tag and flow id for the
RON control plane. Moreover, routing overlays for multicast
can construct multicast overlay topology, but it cannot make a
unicast routing table on the data plane.

As described above, existing overlay networks has mutual
dependence of control plane and data plane to achieve the func-
tions. Consequently, all of overlay networks built with each
technology are completely isolated, and it causes complication
of network operations and increase of development cost. When
creating a new overlay technology, developers have to design
and implement both of control and data plane.

III. APPROACH

In this study, to solve problems as referred to above, we
introduce a new abstraction layer for overlay networks and
propose a common protocol stack, called ovstack, as a data
plane of the abstraction layer. Existing overlays are designed
specifically for each upper application and function. Thus,
it causes isolation of overlay networks and partial lack of
features. In this study, instead of building an overlay network
as a single technology, the overlay network itself is abstracted
as a function of the network into the network layering model.
Figure 1 shows the overview of this abstraction layer. Proposed
system provides protocol stack of overlay data plane in the
network layering model as a overlay layer at Fig 1.

A. Requirements

The requirements of new abstract layer for overlay net-
works are shown below.

1) Node ID in overlay network
2) Routing and forwarding in overlay network
3) Routing tables for each applications
4) Isolation of data plane and control plane

At first, routing on the overlay layer is achieved through
that overlay nodes have each node ID in the overlay layer like
RON. Thus, by multihop overlay routing achieves to improve
performance about specific metrics such as throughput, and
multicast routing in an overlay network. On the other hand,
this routing table for overlay network have to be able to be
constructed multiply. Routing tables should be constructed for
each on application, because requirements of each application
to network are different from others. Namely, multi-tenancy of
overlay network for applications have to be capable. Finally,
architectures of control plane and data plane have to be
isolated. Instead of especial system for specific requirements
or applications, data plane have to be utilized transparently
through each control plane corresponding to requirements.

B. Overview of ovstack

In this paper, we propose ovstack as a protocol stack
that structures the data plane of the overlay layer. In this
section, we describe the overview of ovstack. Existing overlay
technologies construct individual overlay networks for each
application or requirement on the network layer i.e., IPv4 and
IPv6 as shown at Figure 1. Thus, the isolation of overlay
networks and overhead of re-encapsulation at relay nodes are
occurred. Therefore, ovstack provides common data plane for
overlays as a one of layers. Applications utilizing overlay
networks can construct their own overlay network for each
application through the overlay layer structured by ovstack.

ovstack allows construction of multiple overlay networks
for each application or requirement. Figure 2 depicts the
overview of it. In ovstack architecture, data plane and control
plane are completely isolated by system design. The data
plane provides following functions, node identifier, multiple
routing tables, packet encapsulation and decapsulation, routing
and forwarding encapsulated packets. Multiple routing tables
are constructed at ovstack layer, and multiple control planes
operate each routing table. Thus, multiple overlay networks
for various applications, requirements or specific functions for
a flexible structure can be treated at same overlay space.

Moreover, through utilizing ovstack, developers need not
to design and implement a data plane by themselves when
creating a new overlay technology. In existing overlays, Packet
formats and control plane formats are designed for each appli-
cation, thereby control and data plane do not have transparency.
Thus, developers have to design all of entity of an overlay,
and complications of operations for individual overlays are
increasing. By contrast, ovstack providing common functions
of data plane as a abstraction layer, a new overlay technology
is able to be developed by only designing a control plane.
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C. Design of Data Plane of ovstack

ovstack is an protocol stack as a data plane of overlay
networks. In this section, we describe the design of aspect as
a data plane of ovstack.

In ovstack, node ID is 32 bits identifier in flat space.
It is meaning that ID does not have especial semantics like
netmask and longest match of IP. Using flat space for node
identifier avoids ID and locator binding related problems like
IP. Moreover, it has possibility of introducing methods of
Distributed Hash Table (DHT) such as Chord [10] and Routing
on Flat Label [11] for construction of overlays.

ovstack contain routing tables for multihop routing in
overlay layer. This routing table is constructed from 2 entities,
Routing Information Base (RIB) and Locator Information Base
(LIB). RIB consists of entries of destination ID and next hop
node IDs. Overlay routing of ovstack is processed based on this
RIB. A destination ID can contain multiple next hop node IDs.
When a destination has multiple next hop, a packet towards the

destination is copied and transmitted to all next hops. Multicast
forwarding is achieved by this method. Moreover, as referred
to above, ID space of ovstack does not have semantics, so that
specific IDs for multicast do not exist.

LIB consists of entries of a node ID and IP addresses
as a locator of a node. When routing packets on overlay
layer, next hop node is found from RIB. And IP is utilized
as actual transmission of lower layer of the overlay. LIB is
map table that is used when finding an actual IP address
of next hop nodes. ovstack LIB allows multiple locator IP
addresses for one node. it enables that load balancing like
LISP locator balancing that cannot be achieved on IP layer.
Each locator address has weight value, so that weight based
locator address load balancing is achieved. Thus, if a node has
multiple links in IP layer, ovstack can utilize bandwidth of
these links efficiently.

Next, we describe packet routing and forwarding processes.
Figure 3 shows the header format of ovstack. ovstack encapsu-
lates packets with IP, UDP, and this ovstack header. Functions
and roles of each field are described below.

ovstack	 header	 format	 :

0	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 1	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 2	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 3	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 4

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|	 	 	 	 Version	 	 	 	 |	 	 Application	 	 |	 	 	 	 	 	 	 TTL	 	 	 	 	 |	 	 	 	 	 	 Flags	 	 	 	 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|	 	 	 	 	 	 	 	 	 	 	 	 	 	 Virtual	 Network	 Identifier	 	 	 	 	 	 	 |	 	 	 	 	 	 RSV	 	 	 	 	 	 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Hash	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Destination	 Node	 ID	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

|	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 Source	 Node	 ID	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 |

+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+


Fig. 3. Header format of ovstack.



• Application Field
Application field presents the type of upper layer ap-
plication. When routing packets, a routing table to be
referred to is indicated by this number of application
field of received packets.

• TTL (Time To Live)
TTL field presents the residual hop count. Nodes
decrease a hop count when forwarding the packet.
And if the field is 0, the packet is dropped. Thus,
packet increases caused by routing loop on overlays
is avoided.

• Virtual Network Identifier
Virtual Network Identifier (VNI) field is utilized for
multi-tenancy by upper layer applications. Applica-
tions can isolate networks on ovstack overlay utilizing
this VNI field. The routing layer of ovstack doesn’t do
anything about this field.

• Hash
Hash field is utilized to decide a locator address of a
next hop node when the next hop node has multiple
locators. If a node has multiple locators, traffic is
balanced for locators on IP layer. In this case, a flow
that has to be prevented packet reordering can be
distinguished by only upper layer application. Then,
by filling the hash field in response to a flow of the
application distinguished, reordering caused by load
balancing on the layer is avoided.

• Destination Node ID
Destination Node ID field presents the node ID that
a packet has to be arrived at last. A node receiving
a packet finds a next hop by this field from routing
table, and transmits to the next hop.

• Source Node ID
Source Node ID field presents a node that sent the
packet.

The process flow of a packet from an application to an
overlay network through the ovstack routing layer is shown at
Figure 4.

At first, application drivers have to be prepared for each
application that utilizes ovstack. Where data have to be trans-
ferred to can be decided by only the application. It is similar
to a case of IP. Due to this, applications must resolve the ID
of destination node by using some protocols (e.g., application
table shown at Figure 4, or some DNS like systems). An
application driver encapsulates data with an ovstack header
filled destination ID, source ID, application number and hash.

ovstack routing layer receives encapsulated packets from
application drivers. Then, it finds a next hop of a packet
in accordance with routing table in response to application
number of the packet. At first, look up the next hop node ID
from RIB. if it is not found, the packet is dropped. At second,
look up the locator address of the next hop node from LIB.
if it is not found, the packet is also dropped. if the next hop
has multiple locator addresses, a locator address is decided in
accordance with hash value of ovstack header of the packet.
When decided a locator address of next hop, the packet is
encapsulated with UDP header, and IP header. A source IP
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Fig. 4. Processing flow of a packet form an application driver to an overlay
network through the ovstack routing layer.

address is decided from own locator addresses by hash value.
At last, the packet encapsulated up to IP header is passed to
IP routing stack of own node, and transmitted to the next hop
through an IP network.

When a relay node receives an encapsulated packet, remove
outer IP and UDP headers at first. Next, the packet with
ovstack header is processed in the same manner as received
from an application driver. Look up a next hop from RIB in
response to the application number of the packet, look up a
locator address of the next hop, encapsulating the packet with
UDP and IP headers, and transmitting to next hop. In this way,
ovstack achieves hop-by-hop overlay routing.

D. Design of Control Plane of ovstack

ovstack is data plane, and its routing table and forwarding
architecture is isolated from control plane systems to achieve
transparency. Therefore, ovstack as a data plane provides APIs
for operation of routing tables to control plane systems.

RIB and LIB that routing table of ovstack is constructed
from are prepared multiply for each applications. Therefore,
multiple overlay networks for each requirement can be built
on one data plane system of ovstack. Thus, instructions to
routing table from control plane are also operated per routing
table individually. Instructions for a single routing table are
show below.

• Add node ID, locator address and weight to LIB,
delete and look up them.

• Add route to RIB, delete and look up it.

By adding locator address information of a node to LIB,
packets in ovstack header is transmitted through an IP network.
Moreover, by adding entries of route to RIB, routing table
is built by control planes. ovstack provides these APIs, and
control planes maintain routing tables through them. Instruc-
tions for LIB and RIB are also isolated, so that proper control
planes for LIB and RIB is designed and selected in response
to operational requirements.



IV. IMPLEMENTATION

In this paper, we implemented ovstack as a part of network
stack of Linux kernel. In addition, we implemented Overlaid
Ethernet (oveth) as an application driver for Ethernet on
ovstack.

A. ovstack

ovstack is implemented as a kernel module of Linux, and
it runs as a part of network stack. ovstack provides a function
of ovstack routing with RIB and LIB as a referred to above.
At the initializing, ovstack creates a UDP socket in kernel. To
receive encapsulated packets in UDP, encap_rcv callback of
struct udp_sock is used in similar way of VXLAN driver
of Linux kernel. When received packets through UDP socket
or application driver, ovstack processes routing and forwarding
in accordance with RIB. If the destination of ovstack packets
is own node ID, packets are passed to application driver in
response to application filed of ovstack header. If it is not
own node ID, packets are transmitted to a locator address of
next hop node that is found from LIB without decapsulation
of ovstack header.

In addition, we implemented APIs to operate RIB and
LIB via Netlink. Netlink is an API for communication be-
tween userland application and Linux kernel. Through Generic
Netlink, a part of Netlink API, developers are able to make a
user defined instruction and data structure for communication
to with kernel. Instructions that are add/del/look up RIB and
LIB are implemented with this Generic Netlink extension.

B. oveth

oveth is application driver to transport Ethernet frame
on an overlay network of ovstack. oveth is implemented as
a Linux device driver for an Ethernet interface. Users are
able to create pseudo Ethernet interface that is connected
to an overlay network by ip link add type oveth command
of customized iproute2. These pseudo NICs can be created
for each VNI. oveth creates Forwarding Data Base (FDB)
that constructed from pairs of destination MAC address and
destination node ID for each VNI, so that multi-tenancy on
ovstack overlay is achieved. Packets transmitted from a pseudo
NIC are encapsulated with ovstack header in accordance with
FDB of a VNI of the NIC, and passed to ovstack routing layer.

FDB of oveth is constructed in the same way of VXLAN.
When receiving encapsulated packets from ovstack routing
layer, oveth driver learns the pair of source MAC address of
inner Ethernet frame and source node ID of outer ovstack
header. If destination node ID is not found on FDB when
transmitting packets, destination node ID is set given node
ID which is configured as a destination of broadcast MAC
address. By building a route of the given ID as a multicast
route, broadcast frames are transferred to all of ovstack node
that join an oveth overlay network.

V. EVALUATION

Our proposed method, ovstack, is a protocol stack of
data plane for overlays. Thus, in this paper, we evaluated
about performance of packet forwarding. Due to encapsula-
tion, degradation of forwarding performance against native IP

TABLE I. EVALUATION EQUIPMENTS.

CPU Memory Linux Kernel
ovstack node Intel Core i7 3770K 3.5GHz 32GB 3.8.0-19-generic
tester node Intel Xeon E5 2420 1.9GHz 16GB 3.0.93-netmap-custom

Throughput Test	
Topology	

Delay/Jitter Test	
Topology	

Tester	
node	

Tester	
node	

ovstack	
node	

Test traffic	

Tester	
node	

ovstack	
node	

Test traffic	

Fig. 5. Experimental Topology to evaluate performance of ovstack data plane.

routing and Ethernet switching is expected. Thereby, it must
be evaluated whether the performance is acceptable or not.
In addition, ovstack avoid the overhead of re-encapsulation
by routing on overlay layer. It must be also evaluated the
improvement of this avoidance.

We evaluated forwarding performance about throughput,
delay, and jitter. The computer nodes used in this performance
tests are show in Table I, and test topologies are shown at
Figure 5. All of inter connect of nodes are Intel X520 10
Gigabit Ethernet Cards and direct attach cables. The tester
software used in tests is implemented using netmap [12].
Because of that ovstack forwards packets in kernel, the max
bandwidth of test traffic generated by most software traffic
generators (e.g, iperf or pktgen) may be forwarded by ovstack
without packet loss. Thus, we used netmap for generating test
traffic. In tests, ovstack routing, switching between 2 different
VXLAN networks, IP routing, and Ethernet switching are
evaluated. All test traffic of ovstack, VXLAN, IP and Ethernet
packets, are generated by a tester node. Openvswitch[13]
version 1.9.0 was used for Ethernet switching.

We tested the throughput of implementations changing
packet size of test traffic from 64, 128, 256, 512, 1024, 1500,
2048, 4096, to 9000 bytes. At cases of each packet size, test
traffic was transmitted for 180 sec. Figure 6 shows the result
of throughput test.

With the result, the performance of ovstack is worse than
performance of IP and Ethernet. It is caused by packet encap-
sulation of ovstack. However, performance does not change
much after 1500 bytes and 64, 126, 256, bytes compared to the
Ethernet switching. It means that ovstack performance and its
degradation is within the feasible range compared to Ethernet
switching. On the other hand, the performance of ovstack is
better than VXLAN’s result. In VXLAN case, decapsulation
packets from a link, Ethernet switching, encapsulation with
VXLAN, UDP, IP headers again, and transmitted processes
are required. Thus these wasted processes cause performance
degradation. It means that routing and forwarding on overlay
layer can reduce the overhead of overlay routing that was
constructed from existing overlays having full-mesh tunneling
topology.
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Fig. 6. Throughput of packet forwarding.
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Fig. 7. Delay of packet forwarding.

Figure 7 shows the result of forwarding delay test, and
Figure 8 show the jitter of packet forwarding. In case of
both tests, packet size was 128 bytes, because when inserted
a timestamp to VXLAN encapsulated packets, the packet
length had to be longer than 100 bytes (outer Ethernet header,
outer IP header, UDP header, VXLAN header, inner Ethernet
header, inner IP header, and struct timespec). The jitter denotes
the variance of the difference in round trip time between
successive packets.

With the results, performance of ovstack is worse than
packet forwarding without encapsulation as we expected. The
cause of this degradation is also encapsulation obviously.
However, it is better than VXLAN’s one. These results means
that the routing on overlay layer is effective against routing
using tunneling technologies, as well.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have presented a new abstraction layer
for overlay networks between the existing network layer and
application in the network layering model. The new layer has
abstracted the overlay network as a function of the network
stack. Then, we have proposed ovstack as a protocol stack of
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Fig. 8. Jitter of packet forwarding.

a data plane for overlay networks, and we have designed and
implemented proposed system as a part of network stack of
Linux kernel. We evaluated the performance of ovstack as a
data plane. The performance is degraded due to encapsulation,
however it is acceptable. Furthermore, it is better than overlay
routing using existing overlay technology because of the rout-
ing on overlay layer. As a result, we conclude that, the overlay
network is abstracted as a layer of the network stack, and its
data plane is provided. Through using the ovstack, developers
will be able to create new overlay routing systems freely with
common data plane that has acceptable performance.

Although we proposed ovstack as a protocol stack for
common data plane, the overlay network cannot be built by
only data plane. Now, we are designing and implementing
some protocols for the control plane to show the proof that
overlay networks are able to be built on the ovstack abstrac-
tion layer with various control planes. In addition, we are
now considering a scalable way to negotiate node ID not to
cause the Locator/ID binding problems in multiple overlays
environment.
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CODE AVAILABILITY

The source code described in this paper is available at https:
//github.com/upa/ovstack. Linux kernel module implementa-
tions of ovstack and oveth, and iproute2 including extensions
for them are contained in this repository.
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