
Dripcast – server-less Java programming framework
for billions of IoT devices

Ikuo Nakagawa
Intec, Inc. & Osaka University

Masahiro Hiji
Tohoku University

Hiroshi Esaki
University of Tokyo

Abstract—We propose “Dripcast”, a new server-less Java
programming framework for billions of IoT (Internet of Things)
devices. The framework provides a simple and easy way to
develop device applications working with a cloud, that is, scalable
computing resources on the Internet. The framework consists of
two key technologies; (1) transparent remote procedure call (2)
mechanism to read, write and process Java object with scale-
out style distributed datastore. A great benefit of the framework
is no need of writing server-side program nor database code.
A very simple client-side program is enough to work with the
framework, to read, write or process Java objects on a cloud.
The mechanism is infinitely scalable since it works with scale-
out technologies. In this paper, we describe the concept and the
brief architecture of the Dripcast. We also introduce very simple
example of a use case of the Dripcast.

I. INTRODUCTION

Today, a huge amount of devices and sensors are connecting
to the Internet under the concept of IoT (Internet of Things).
Some expectations 1 said the number of IoT devices would
be tens (or hundreds) of billions by 2020. There are many
working sensors, in home electric devices, healthcare devices,
etc. A smartphone is a set of various sensors and is also a
useful IoT device. It has a GPS receiver, an accelerometer, a
thermometer, etc. There will be unlimited number of applica-
tions working with such IoT devices.

Most of such device applications work with cloud services,
that is highly scalable computer resources on the Net. One
of major computing models for such device applications is
‘cloud-ful’. In the model, applications run on user-side devices
(smartphone, tablet, any small devices or gateways for sensors)
while they store and process data on a cloud.

On the other hand, programming such applications is still
difficult. In general, we have to develop and deploy server side
applications for such device applications. which work with
backend databases. Many such applications are still designed
in 3 layer model, where we need not only develop client side
application but also server side programs and database code.

In this paper, we propose “Dripcast”, a new Java program-
ming framework which is suitable device applications. The
framework provides a simple and easy framework for small
devices to operate data on a cloud environment, where, operate
means any set of reading, writing and processing data.

The Dripcast consists of two key technologies ;
1) transparent Java remote procedure call

1www.gartner.com, www.idc.com, www.cisco.com, etc.

2) a mechanism to store, read and process Java object with
scale-out style distributed datastore.

As the result, a very simple client-side programming is enough
for small devices to work with highly scalable cloud platform.
There is no need to write server-side program nor database
code for such devices to operate Java objects on a cloud.

Note that, we focus into Java programming language. We
have several application environment for IoT devices, today.
For example, Android 2 is powerful application platform for
smartphones, tablets and various mobile devices. OSGi 3 is a
gateway for small devices in houses or buildings.

A goal of this paper is providing simple and easy developing
model of “server-less”. In the server-less programming model,
developers need not take care about databases, server side
applications nor communications between application com-
ponents. We need not to study SQL, server programming
languages such as php, perl, Ruby, etc. We need not care of
REST or XML definitions, as well.

We also propose a highly scalable mechanism to oper-
ate process Java objects on a cloud environment. Since the
Dripcast is based on a scale-out style computing model, the
framework provides practically unlimited scalability.

In this paper, we refer existing technologies and researches
in Section II. We summarize assumptions and objectives of
this paper in Section III, and describe basic architecture in
Section IV. We introduce an example Dripcast application in
Section V. Finally, we discuss for further understanding in
Section VI and conclude in Section VII.

II. RELATED WORKS

The Dripcast framework consists of two key technologies,
(1) transparent remote procedure call, and (2) mechanism to
operate Java object on scale-out style distributed datastore. We
survey related works in such points of view.

A. RPC & ORB

Several RPC (remote procedure call) and ORB (object
request broker) mechanisms have been discussed. Java RMI
(Java Remote Method Invocation) [1] is an application pro-
gramming interface for remote procedure calls. JRMP (Java
Remote Method Protocol) is categorized as ORB technology
and defined the protocol for remote procedure call from

2www.android.com
3www.osgi.org



a JavaVM to another JavaVM. CORBA (Common Object
Request Broker Architecture) [2] is also the mechanism for
remote procedure calls which works in non JavaVM context,
and RMI-IIOP (RMI over IIOP) is Java RMI interface in
CORBA systems.

Interface definitions and method invocation mechanisms are
based on OOM (Object oriented modeling) in both RMI and
ORB. On the other hand, such technologies assumes client–
server programming model (and 3 layers of client–server–
database programming model, in general). Programmers need
to write both client and server side programs.

Dripcast assumes a new programming model, ”server-less”,
in which programmers do not need to care of server side
programming.

B. Distributed Datastore

The Dripcast framework provides programming framework
which is working with scale-out style distributed datastore.
From the view of point of scale-out datastore, Several services
and technologies are available.

Some service providers have their own scalable datastore.
For example, Google App Engine (GAE) [3] is a program-
ming environment for the Google cloud. They published GFS
(Google File System) [4], BigTable [5] and MapReduce [6]
as Google technologies. Windows Azure [7] provided by
Microsoft, has scalable storage service called ‘Azure Storage’,
SQL database called ‘Azure SQL database’, analyzing engine
using Hadoop called ‘Azure HDinsight’ and so on.

Although service providers have their own proprietary im-
plementation, there are various open source implementations.
Hadoop [8] is a famous open source project for scalable
cloud computing platform. It provides scalable storage space
(HDFS), reliable database (hbase), parallel and distributed
processing model (MapReduce) and other many useful fea-
tures. To handle a Hadoop system effectively, developers have
to develop a complex and efficient programs in the Hadoop
manner.

Several distributed KVS (Key Value Store) and object
store mechanisms also exist. Cassandra [10], CouchBase [11],
Tokyo/Kyoto Cabinet [12] [13], Roma [14], Basho [15] and
many open sources exists for scale-out object management.
All of these datastore softwares provide a mechanism to read
and write data from/to scale-out computer cluster. Providing
a programming framework is out-of-scope for such technolo-
gies.

Our research purpose in this paper is providing a framework
in front of such scale-out distribute datastore. Nakagawa
proposed Jobcast [16] which is an intuitive extension of
KVS mechanism in which we achieve parallel and distributed
processing mechanism. Jobcast works in very scalable environ-
ment and there is no SPOF (Single Point Of Failure) by nature.
The Jobcast might be a part (as backend) of the Dripcast
framework. We will denote the relation of the Dripcast and
Jobcast in Section IV.

III. ASSUMPTIONS AND OBJECTIVES

At first, we summarize assumptions and objectives of the
research.

A. Assumptions

We discuss IoT (Internet of Things) applications working
on small devices. Especially, we focus into developing device
applications working with cloud platform on the Net. We
assume some conditions for such device applications :

• Applications work on small device, such as smartphones,
tablets, navigation systems, home gateways, etc. Such
devices have small and limited computer resources.

• Applications operate (read, write and process) data on the
cloud, while they provide graphical or non-graphical UI
(user interface) on devices.

• Applications might work on tens (or hundreds) of billions
devices in a same time.

Note that, we focus into developing device applications on
Java based platform such as Android or OSGi. The Dripcast
framework is designed for Java programming environment.

B. Objectives

The objectives of this research is providing a new frame-
work for device applications described in the previous subsec-
tion. We have two goals to achieve, as follows.

1) Server-less programming mechanism: The framework
provides a very simple and easy mechanism to operate (read,
write and process) Java objects on a cloud. It enables device
applications to upload, refer or share data object with a cloud.

Any object on the cloud has its world unique identifier
(UUID, for example). The framework allows developers not
only to read, write data object via the identifier but also to
invoke Java method transparently via standard Java interface.

Although a transparent Java method call is similar to
RMI (Remote Method Invocation) or related technologies, we
propose more effective mechanism of ‘server-less’, so that
developers need not to write any server programming nor
database code.

2) Unlimited scalability for IoT applications: Scalability is
strict requirement for IoT application platforms. There will
be tens (or hundreds) of millions devices, and the number of
devices may grow infinitely. Thus, cloud platform must be
designed in scale-out style.

The Dripcast framework works with scale-out style dis-
tributed datastore to achieve unlimited scalability. The backend
datastore should be designed by ‘shared nothing’ technology.
It is really suitable for most IoT applications. It can handle
a huge amount of simultaneous simple access, while it is not
good for relational management or transaction processes in
legacy applications.



IV. ARCHITECTURE

The Dripcast is a framework for storing and processing Java
objects. Any object has the world unique ID represented as
UUID. The Dripcast framework always takes ID as an argument
to identify the object on the cloud.

The Dripcast framework consists of four components that
is Client, Relay, Engine and Store.

Store Relay Engine Client 
(Library) 

on Cloud Environment Devices 

Fig. 1. Architecture

A. Client

Client is a small Java library which works on user devices
such as smartphones, tablet, home gateways and so on. There
are two major roles : (1) managing transparent Java object in
client devices, and (2) sending remote procedure call requests
to the Relay.

To realize transparent Java object, we use Proxy mechanism.
For a given id and an interface class YourInterface, we
create a Proxy object (defined in standard JDK) which supports
the YourInterface interface. The Dripcast framework has
attach method, to realize a transparent Java object in a simple
way, as :

Dripcast d = new Dripcast();
YourInterface v

= d.attach(id, YourInterface.class);

On a method call for the Proxy object, we would have
method-name, argument-classes and arguments-objects by
Proxy mechanism. The client library creates a new Job
instance which has ID, method-name, arguments-classes and
arguments-objects as its instance variables. The library sends
the Job instance to Relay as a request. After getting the result
of the request, the method call returns it as the result.

There is no need to care about RPC nor communication
flow in each method call since the Proxy object provides
transparent method call mechanism, Developers may call
interface methods in normal way.

The Client also supports simple mechanism to send CRE-
ATE or REMOVE request to the Relay, so that the client
library supports create method for creating a new Java object
on the cloud, as follows.

Dripcast d = new Dripcast();
d.create(id, YourClass.class);

B. Relay

Relay is a set of relay servers. A relay server is a distribution
gateway, who receives requests (Job instances) from clients
and delivers such requests to engine servers described in the
next subsection.

A relay server knows association of ID and engine servers.
The association is managed by Distributed Hash Table
(DHT) [17][18]. There is only one engine server for an ID
in a same time so that distribution gateway could select the
unique engine server for a request. Relay servers also deliver
very simple operations such as create and remove data in the
same manner.

Relay servers are stateless so that the Relay mechanism
would be highly scalable.

We denote that the Jobcast is a parallel and distributed
processing mechanism which is suitable to implement Relay,
Engine and Store mechanism in the Dripcast framework. Relay
servers correspond to clients in Jobcast architecture.

C. Engine

Engine is a set of engine servers. Each engine server has
its own key space assigned by DHT, so that it would read,
write and process Java object in consistent environment for
authorized key space. Each engine server runs JavaVM. In
other words, Engine is the distribute JavaVM for parallel and
distributed processing environment, managed by DHT.

The most important role of an engine server is executing
Java method for remote procedure call requests encapsulated
in Job instances. When an engine server receives a Job
instance which contains ID, method-name, argument-classes
and arguments. The server loads the Java object x with ID
as the key from the Store, and tries to invoke the method
of x specified by the method-name and argument-classes with
given arguments. If there is any change in x, the engine server
stores it back into the Store. At last, the engine server returns
the result back to the relay server who sent the request.

Engine servers correspond to a part of backend servers in
the Jobcast architecture. The processing framework on Jobcast
nodes is suitable for engine servers to execute jobs.

D. Store

The Dripcast assumes there are highly scalable datastore in
backend. Any scale-out NoSQL described in Section II might
be applicable. Store should provide mechanisms for replication
management and automatic failover for resiliency.

The Dripcast may call following method with ID as a key.
1) GET – get a serialized Java object.
2) PUT – put (update) a serialized Java object.
3) REMOVE – remove existing data.
Note that, Store might be separated from engine servers in

the Dripcast framework, while datastore is implemented as a
part of backend servers in the Jobcast architecture.



V. EXAMPLE

In this section, we introduce a simple example of the
Dripcast application. Let’s think of a meeting assistance ap-
plication. There are some (2 to 50 for example) members who
will join the meeting. For simplicity, we assume all members
have Android smartphones. Each smartphone collects GPS
location information and uploads the location into the cloud
so that all members can show members’ location map using
Google Map or similar geographical map service.

A. How to use

We describe an example of Dripcast use case, briefly.
1) Preparation: At first, we assign uid which is a unique

ID (identifier). We also create an actual Java object on the
cloud, associated with uid. In this example, we use TreeMap
object which is defined in standard JDK.

Dripcast d = new Dripcast();
d.create(uid, TreeMap.class);

Here, d is a Dripcast instance, which enables users to use the
Dripcast framework. d.create creates a new Java object on
the cloud. In this example, it creates a new TreeMap object
associated with uid. Note that, it is easy to share the uid
among all members, by sending service URL (containing uid)
or via e-mail, for example.

Now, all members can access the Java object by uid, by
creating a Dripcast enabled object.

NavigableMap map = d.attach(uid, NavigableMap.class);

d.attach generates a virtual object in a local device. It acts
as Proxy object and a user can call remove method invocation
transparently (like, RMI). In this example, each user has the
Dripcast enabled object map, which supports NavigableMap
interface (defined in standard JDK, as well).

2) Upload GPS information: To upload his/her GPS infor-
mation into the cloud, just put a pair of phone number pn and
location information x,y, into the map.

map.put(pn, x + "," + y);

map.put method call causes transparent remote procedure
call. It communicates with the cloud to invoke put method
on the cloud.

3) Show locations on a map: It is easy to show locations
on the map, as well.

Entry e = map.firstEntry();
while (e != null) {

String pn = (String)e.getKey();
String[] pos = ((String)e.getValue()).split(",");
// show location of with pn at (pos[0], pos[1]).
e = map.higherEntry(pn);

}

firstEntry and higherEntry (also defined as methods
of NavigableMap in standard JDK) method calls causes
transparent remote procedure calls. It communicates with the
cloud to invoke firstEntry and higherEntry methods on
the cloud.

B. Behaviors & Communications

We note more details about behaviros and communication
flow related to the Dripcast framework. Fig. 2 shows brief
communication flow in the given example.

d.create� new�
store �

map.put� map.put� load�
store �result � result �

ACK�ACK�

client 
(devices)�

relay 
(gateway)�

engine 
(Distributed JavaVM)�

store 
(distributed KVS)�

d.attach�

Fig. 2. Meeting assist service

In the example, there are two explicit calls related to
the Dripcast, that is, d.create and d.attach. By calling
d.create (first red empty star, in Fig. 2), the Dripcast
framework communicates with backend servers; the client
sends a request to a relay. the relay selects the authorized
engine server by uid. the engine creates a new Java object
(red filled start) in the server, and store the object into backend
store.

On the other hand, calling d.attach (second red empty
and dotted start) is just for a declaration. The Dripcast create
a Proxy object in the local-device, which is associated with
uid and Java interface (NavigableMap, in this example).

After these preparation steps, all method calls for the
Dripcast enabled object, map, cause Proxy method calls. For
example, map.put (blue empty star) causes Proxy method
invocation as; the client send a request to a relay, the relay
selects the authorized engine server by uid, the engine loads
the Java object for uid if required, and invokes put method
(blue filled star) for the object.

All method calls for map work as similar.
Note that, after preparation steps, in which we call only

d.create and d.attach methods, the client can access the
Java object via simple Java interface. There is no need to write
server-side program nor database code.

C. Benefit of the Dripcast

There are several benefits of using the Dripcast. We describe
major two key benefit, in this section.

1) Server-less: All we need to implement the application
are three steps described in Section V-A1, V-A2 and V-A3. All
what developers need to do is writing only the client (Android)
side logic. It is very simple development model and there is
no need to ;

• define database schema



• write SQL codes
• implement server (cloud) side system.
• define REST over HTTP
• write codes to communicate with server (cloud)

The Dripcast framework takes care all of these steps in-
stead of developers. Developers need not to study SQL/RDB,
REST/HTTP nor server side programming such as php, ruby,
perl or others. Only what developers have to study is Java
programming on Android devices.

2) Intuitive understanding: Note that, there is no special
code depends on the Dripcast. All what we do is, just call
JDK standard method, as well.

Figure 3 shows the concept of the meeting assistance
application for the intuitive understanding.

TreeMap object 
with unique ID�

map.put(pn1, “x1,y1”);�

map.put(pn2, “x2,y2”);�

map.put(pn3, “x3,y3”);�

Entry e = map.firstEntry(); and 
e = map.higherEntry(); 

Fig. 3. Meeting assist service

There is the unique TreeMap object on the cloud and all
members (with Android devices) share the object. Only what
a member needs to do to upload his/her location is calling
map.put method. A member also calls map.firstEntry
and map.higherEntry to list the location information for
all members.

3) Reuse of existing libraries: If there is an application
library written in really OOM style, it is possible to reuse such
libraries. The Dripcast requires a little change (or no change)
to operate Java objects on a cloud.

In the example, described in this section, there is no special
code for the Dripcast in V-A2 and V-A3.

D. Tips

In the example, we use TreeMap instead of HashMap.
This is because we would like to call firstEntry and
higherEntry methods of the stored object.

Although HashMap has keySet or entrySet methods to
iterate all entries stored in the object, the result of keySet
or entrySet may not be serializable in some JDK imple-
mentation. It causes NotSerializableException during
transmitting the data between client and cloud. To handle
iterative (Iterator) objects in the Dripcast framework, we
have to transform such objects to be serializable in Engine
logic. The mechanism will be a part of future researches.

VI. CHALLENGES

There are some challenges in develop and deploy the Drip-
cast framework. In this section, we summarize the challenges
in view points of ;

1) Object oriented modeling on a cloud
2) Server-less programming model
3) Cloud as a large JavaVM

We describe and discuss these challenges for further re-
searches.

A. Object oriented modeling with a cloud

The Dripcast framework is based on Object Oriented Mod-
eling. Any transparent Java object is tied with interface decla-
ration and handles remote procedure calls inside method calls.
The key technology of the Dripcast framework is providing
fully compatible interface as local-device programming. If
developers write their program based on interface definitions
rather than accessing instance or class variables, source code
is fully compatible in both cases for local-device programming
or for cloud-ful programming.

B. Proposing ‘server-less programming model’

A great benefit of the Dripcast framework is changing
developing model. In the historical developing model, called
3 Layers Model, we have to take care of at least three
components, client-side application, server-side application
and database. As shown in Fig 4, developers need to write
programming code not only for client application logic but also
for server side application or communication logic between
client and server.

GUI / design�
Table / Data 

(RDB)�
Application 

Logic�

Server Logic 
(Servlet) 

via 
REST/HTTP 

via 
SQL 

Fig. 4. 3 Layers Model

In the Dripcast model, developers only need to take care
of application logic. the Dripcast framework automatically
converts method calls to the associated remote procedure
calls on a cloud. The framework handles data persistency of
associated Java objects in the cloud environment as well.

GUI / design�

Application 
Logic�

simple & easy with server-less model 
(no need of SQL nor REST/HTTP)�

Application 
Logic�Platform 

(cloud) 

Fig. 5. Dripcast Model



The Dripcast framework has a great benefit of scalability
since the framework supports the highly scalable cloud envi-
ronment as the backend system. The framework may have
billions of Java object on a huge scale cloud environment
and deliver millions of simultaneous remote procedure call
requests to thousands or tends of thousands of computers in
parallel.

In historical 3 Layers Models, developers are responsible
for scalability and reliability of the system. Developers must
design and implement such scalable systems in mind.

In the Dripcast framework, scalability and reliability is
automatically managed by the framework itself.

C. Cloud as a large JavaVM

As described in Section IV, the Engine works as distributed
JavaVM with DHT technology. We think that the architecture
enables to achieve a new Java environment in highly scalable
(scale-out style) cloud platform.

In the Dripcast framework, any Java object has its own ID
and stored into one of engine servers distributed by DHT. Key
based shared nothing mechanism is not effective for relational
operations and transactions for legacy applications, but is very
suitable for IoT applications.

From a view point of client-programming, the Dripcast
framework seems a huge and scale-out style JavaVM. In the
framework, developers do not care of object location (since
the location is managed by DHT), remote procedure call (it’s
transparent by Proxy mechanism), any network communica-
tion nor anything about JavaVM distribution at all.

There are two more important mechanism we have to design
and implement to achieve more practical distributed Java
environment, that is ;

1) Reference model among Distributed JavaVM
2) Global garbage collection
Global reference model can be achieved by handling refer-

ences in Java objects during serialization (when we store or
transmit them). We can hook any serialize operation by defin-
ing writeReplace method call to check reference informa-
tion. We also define readResolve to generating transparent
Java object from reference information. More details will be
available in our future researches.

Global garbage collection is also important to release com-
puter resources for unused objects from distributed JavaVM
environment. We have to traverse all references by global
reference model describe in above and check if each Java
object has reference from any other object or not.

We already started to design and implement these two
mechanisms. Such mechanisms will be proposed in a future
researches.

VII. CONCLUSION

In this paper, we propose the Dripcast, a new server-less
Java programming framework. The Dripcast provides a simple
and easy way to write device applications which read, write
and process Java object in a cloud. The framework consists
of two key technologies, (1) transparent remote procedure
call, and (2) distributed JavaVM mechanism working with
scale-out distributed datastore. We also describe a simple
example of GPS application in which the Dripcast framework
enables server-less device programming. We will report the
experimental result of our testbed, in a near future.

ACKNOWLEDGMENTS

We thank to Associate Prof. Kondo in Hiroshima University
and all members of Transparent Cloud Computing Consortium
for useful discussions about device application models and its
implementations. We also thank to WIDE Project, University
of Tokyo, HOTnet, Smart Technologies, A.T.Works, ASTEM
and Ehime CATV for operating the Dripcast testbed.

REFERENCES

[1] “RMI Tutorial”, http://docs.oracle.com/javase/tutorial/rmi/index.html
[2] Gerald Brose, Andreas Vogel, Keith Duddy: “Java Programming with

CORBA”, John Wiley & Sons, ISBN 0-471-37681-7
[3] Google: “Google App Engine”, https://developers.google.com/appengine/
[4] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung: “The Google

File System”, SOSP ’03, October 19―22, 2003.
[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah

A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, Robert E.
Gruber: “BigTable: A Distributed Storage System for Structured Data”,
OSDI’06, November, 2006.

[6] Jeffrey Dean and Sanjay Ghemawat：MapReduce: Simplied Data Pro-
cessing on Large Clusters OSDI ’04, December, 2004.

[7] Microsoft: “Windows Azure”, http://www.windowsazure.com/
[8] Hadoop Project: “Hadoop”, http://hadoop.apache.org/
[9] Memcached project: “memcached - a distributed memory object caching

system”, http://memcached.org/
[10] Cassandra project: “The Apache Cassandra Project”,

http://cassandra.apache.org/
[11] CouchBase: “Document-Oriented NoSQL Database”,

http://www.couthbase.com/
[12] FA Labs: “Tokyo Cabinet : a modern implementation of DBM”,

http://fallabs.com/tokyocabinet/index.html
[13] FA Labs: “Kyoto Cabinet : a straightforward implementation of DBM”,

http://fallabs.com/kyotocabinet/
[14] ROMA project: “A Distributed Key Value Store in Ruby”,

http://code.google.com/p/roma-prj/
[15] Basho: “makers of the Riak distributed database”, http://basho.com
[16] Ikuo Nakagawa and Ken Nagami: “Jobcast – Parallel and distributed

processing framework”, IPSJ Journal, Vol 21, No 3, Jul 2013
[17] Karger, D., Lehman, E., Leighton, T., Panigrahy, R., Levine, M., and

Lewin, D: “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web”, In Pro-
ceedings of the Twenty-Ninth Annual ACM Symposium on theory of
Computing (El Paso, Texas, United States, May 04 - 06, 1997). STOC
’97. ACM Press, New York, NY, 654-663, 1997.

[18] Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan,
H.: “Chord: A scalable peer-to-peer lookup service for internet applica-
tions”, In Proceedings of the 2001 Conference on Applications, Tech-
nologies, Architectures, and Protocols For Computer Communications
(San Diego, California, United States). SIGCOMM ’01. ACM Press,
New York, NY, 149-160, 2001.


