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SUMMARY Dynamic virtual network allocation is a promising traf-
fic control model for cloud resident data center which offers virtual data
centers for customers from the provider’s substrate cloud. Unfortunately,
dynamic virtual network allocation designed in the past was aimed to the
Internet so it needs distributed control methods to scale with such a large
network. The price for the scalability of the completely distributed control
method at both virtual layer and substrate layer is the slow convergence of
algorithm and the less stability of traffic. In this paper, we argue that the
distributed controls in both virtual and substrate networks are not neces-
sary for the cloud resident data center environment, because cloud resident
data center uses centralized controller as the way to give network control
features to customers. In fact, we can use the centralized algorithm in each
virtual data center which is not very large network and the distributed algo-
rithm is only needed in substrate network. Based on the specific properties
of this model, we have used optimization theory to re-design the substrate
algorithm for periodically re-adjusting virtual link capacity. Results from
theoretical analysis, simulations, and experiments show that our algorithm
has faster convergence time, simpler calculation and can make better use
of the feedback information from virtual networks than the previous algo-
rithm.
key words: network virtualization, OpenFlow, data center, centralized
controller, traffic management

1. Introduction

The cloud resident data center [1], which has been proposed
to replace the Amazon virtual private cloud (Amazon VPC)
[2], offers customers not only a bunch of virtual machines
but also the network services to connect and control traf-
fics among these virtual machines. The restricted traffic
control features provided by the Amazon VPC (e.g. stat-
ically add/remove routing entries, access control list) are
not enough for the various requirements of customers. In
fact, customers need the ability of freely choosing dynamic
routing algorithms, security systems and caching systems
to match with their operating model. A cloud resident data
center offers those flexibilities by giving each of virtual data
center customers a physical controller. This controller can
then be used to enable those customers to install proper net-
work control features to control their virtual network portion
rented from the infrastructure cloud. There are three main
properties of cloud resident data center to define the traf-
fic management model. Firstly, a cloud resident data center
is typically based on the physical network structure of dis-
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tributed data centers each with a fat-tree topology. This al-
lows the usage of cheaper switches in the network core layer
than with a conventional topology requiring high-density-
port switches for interconnections within each data center.
This topology has many paths between each end-host pair
so the multi-path traffic engineering is the most suitable
for the traffic management model. Secondly, the traffic de-
mands coming from virtual network customers are a priori
unknown so static traffic controls can lead to higher chances
of demand loss or capacity waste than dynamically adap-
tive traffic controls can. Thirdly, the requirement for vir-
tual network provision to each customer suggests that cloud
resident data centers should support the network virtualiza-
tion [1]. The multi-path load balancing problem has been
tackled in [3] by designing a traffic scheduler to estimate
the elephant or big demands and using heuristic algorithms
to search for the optimal mapping between these demands
and physical paths. The dynamic congestion-control prob-
lem presented in [4] uses a marking system to decrease the
source sending rate variation for archiving the high through-
put even with a small buffer size. The combination of these
two problems has been formulated and solved in the frame-
work of centralized optimization algorithm [5]. However,
all the aforementioned works have dealt with the traffic man-
agement problems in only one network layer. A cloud resi-
dent data center model needs the co-operation of traffic man-
agement mechanisms between virtual layer and substrate
layer to maximize the total utility and make most uses of
the physical resources. Davinci [6] has addressed this traffic
management problem in two layers. At the virtual layer, an
optimization problem has been formulated on the require-
ments of customers and solved distributedly by a decompo-
sition method. At the substrate layer, a periodically updated
mechanism has been proposed to control the capacity of vir-
tual links according to the derived congestion prices. Unfor-
tunately, this approach has been aimed at such big networks
as the Internet so the distributed algorithms have been used
in both substrate layer and virtual layer. This is not suit-
able for the traffic management problem in the cloud resi-
dent data center with virtualized networks each managed by
a centralized controller dedicated for each of the virtual data
center customers. This paper contains two original contri-
butions.

Firstly, in this paper, the cloud resident data center
testbed has been implemented in the OpenFlow platform.
We have decided to use the OpenFlow because of its cen-
tralized system structure whose controller can have a global
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view on the overall network. That centralized controller can
give a better decision to manage the traffics inside the net-
work. Additionally, the OpenFlow is the open system allow-
ing devices from different vendors to in-operate smoothly
via the OpenFlow standard. Our testbed has been imple-
mented on Linux-based computers installed with OpenFlow
switch [7] as the physical layer, FlowVisor [8] as the net-
work virtualization layer, and Network Operating System
NOX [9] as the centralized controller. All the system mod-
ules communicate via the OpenFlow [7] protocol to emulate
the dynamics of a small cloud resident data center testbed.

Secondly, this paper re-designs the traffic control
model in [6] for the OpenFlow-based network setting of
cloud resident data center. Due to the centralized control
structure of the OpenFlow, we have decided to implement
the centralized optimization algorithm on each virtual net-
work instead of distributed algorithm. And we have imple-
mented the distributed traffic control algorithm in the sub-
strate network to periodically control the allocation of vir-
tual link capacity for the new model of cloud resident data
center.

The rest of this paper is organized as follows. Section
2 describes the system model. Section 3 presents the deriva-
tion of our virtual link capacity updated algorithm for cloud
resident data center. Section 4 demonstrates how we imple-
ment our algorithm in OpenFlow based Testbed. Section 5
shows the results and discussions. The final section is Con-
clusion and our future works.

2. System Description

Figure 1 shows the OpenFlow-based cloud resident data
center system testbed constructed in this research. The sys-
tem is comprised of four main elements, i.e., virtual net-
work controller, substrate node, end-host and host manager.
The function of virtual network controller is to control how
substrate nodes switch the packet flows to suitable destina-
tions. The substrate nodes switch the packet flows in ac-
cordance with the instructions from the virtual network con-
troller and periodically calculate as well as update to the

Fig. 1 System functional description.

controller about the new capacity required for their virtual
links. An end-host is a virtual machine on a virtual network.
Each end-host gets traffic optimal rates and multi-path split-
ting ratio from its host manager to adjust its outgoing traffic
rates. The host manager calculates and controls the traffic
rate of all end-hosts in its virtual network in response to the
demands requested from end-hosts and the virtual network
state updated by the controller.

2.1 Traffic Control in Each Virtual Network

Initially, the virtual network controller creates tunnels to
connect its virtual network’s end-hosts by adding the ap-
propriate switching entries to the OpenFlow switches. Each
end-host monitors its aggregated traffic data at its output port
and sends the capacity request to its host manager periodi-
cally. On receiving the requests from all of its end-hosts, the
host manager will calculate the optimal rate for each tunnel
and reply these optimal rate back to the end-hosts. The end-
hosts can then adapt the traffic sending rates to the tunnels
accordingly. With this mechanism, the applications on each
end-host does not need to wait for the optimal rate from host
manager but they can send their traffic out immediately each
time they want.

2.2 Traffic Control in Substrate Network

The mission of traffic control in a substrate network is to
adjust the virtual link capacity periodically in order to max-
imize the total utility. In this paper, the substrate network
uses congestion price of each virtual link to calculate the
suitable bandwidth provided to virtual links. Here, a sub-
strate node does not need to calculate the congestion price
for virtual links one by one by itself as previously imple-
mented in [6]. Instead, in this paper, the substrate node
collects the congestion price for all virtual links from the
host manager. The optimization solver in the host manager
gives the solution of dual variables, which are congestion
prices, while solving the central optimization problem for
end-host traffic sending rate. This way of collecting conges-
tion price information makes our algorithm outperform [6]
because the substrate nodes do not need the computational
resources to calculate the congestion price for each virtual
link and they do not need to spend a lot of time to wait for the
algorithm of calculating congestion price to converge. So,
our algorithm can re-adjust the virtual link capacity faster
and hence more frequently than the approaches in [6].

3. Proposed Optimization Framework for Cloud Resi-
dent Data Center

3.1 Modeling and Notations

The substrate network is modeled by a weighted, directed
graph G(V s, Es), where V s is the set of all substrate nodes
and Es is the set of all directed substrate links. In Fig. 2,
there are three substrate nodes indexed by {1, 2, 3} and six
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Fig. 2 System modeling example.

directed substrate links indexed by {1, 2, 3, 4, 5, 6} between
substrate node pairs {1 − 2, 2 − 1, 1 − 3, 3 − 1, 2 − 3, 3 − 2},
respectively. Similarly, a virtual network k is modeled as a
graph G(V (k), E(k)), where k ∈ K is an element in the vir-
tual network index set. Here, V (k) is the set of nodes in
virtual network k and E(k) is the set of virtual links in vir-
tual network k. For example, in Fig. 2, there are two vir-
tual networks, the yellow one and the red one, each with the
same topology as that of substrate network. Let r(k)

i denote
the demand i of virtual network k. The virtual network con-
trollers use their own traffic engineering algorithm to control
the traffic flowing through their networks. And the substrate
network controls the virtual link capacity by using virtual
link congestion price information. For the example model
in Fig. 2, there is one demand on each of the two virtual
networks, denoted as r(1)

1 and r(2)
1 , respectively. There are

two paths {1 − 3, 1 − 2 − 3} for demand r(1)
1 and two paths

{1 − 2, 1 − 3 − 2} for demand r(2)
1 .

Define l as the general link index, where l ∈ L denotes
the substrate link in the substrate network and l ∈ Lk denotes
the virtual link in virtual network k. Link l of substrate net-
work has the capacity of cl. Link l of virtual network k has
capacity y(k)

l . For virtual network k, each demand can usu-
ally be assigned along more than one path at the same time
so let us define zi(k)

j as the max flow rate available on path
j for demand i of virtual network k. Usually, this flow rate
must be less than or equal to the instantanenous amount of
capacity on path j that is assigned to that demand i to pre-
vent any possible traffic losses. The aim of our optimization
is to find the proper values of these capacity and flow rate
allocation parameters y(k)

l and zi(k)
j .

To define the set of all possible paths whose capacity
and flow rate allocation will be found by our proposed opti-
mization, we use the m-shortest path first algorithm [10] to
find m least cost paths from each source to each destination
in the substrate network as well as in the virtual networks.
Then we restrict our optimization search space within those
obtainable paths only.

The link-path routing matrix for virtual network k [11]
with its column representing each path in source-destination
pairs and its row representing each substrate link index is
denoted by H(k), where Hi(k)

l j = 1 if demand i of virtual net-

work k on path j uses virtual network link l and Hi(k)
l j = 0

otherwise. For example, in Fig. 2, there are two routing ma-
trices H(1) for virtual network 1 and H(2) for virtual network
2. Here, H(1) = [0 1; 0 0; 1 0; 0 0; 0 1; 0 0] because demand
1 of virtual network 1 on path 1 uses virtual network links
3 and demand 1 of virtual network 1 on path 2 uses virtual
network links 1 and 5. Similarly, the second routing matrix
H(2) = [1 0; 0 0; 0 1; 0 0; 0 1; 0 0].

3.2 Virtual-Network Centralized Algorithm

For each fixed k with fixed values of y(k)
l :

maximize: U(k)
(
zi(k)

j , y
(k)
l

)

subject to:
∑

i

∑

j

Hi(k)
l j zi(k)

j ≤ y(k)
l ∀l ∈ Lk

zi(k)
j ≥ 0 ∀i, j

variables: zi(k)
j (1)

As in [6], the objective function of the virtual network
centralized problem (1) can be any concave utility function
which varies with the capacity allocation parameters. The
first constraint implies for each virtual network that the in-
stantateous capacity requirement or total flow rate from all
demands on their paths sharing a given virtual link cannot
exceed the capacity assigned for that virtual link by the sub-
strate network. The second constraint states that the capacity
allocations must be non-negative.

3.3 Substrate-Network Distributed Algorithm

Our starting point is the same as [6] but with the setting of
cloud resident data center in mind, we have derived a differ-
ent virtual link capacity updated algorithm to match within
our OpenFlow based network testbed. Our centralized sub-
strate network optimization is stated by:

maximize:
∑

k

w(k)U(k)
(
zi(k)

j , y
(k)
l

)

subject to:
∑

i

∑

j

Hi(k)
l j zi(k)

j ≤ y(k)
l ∀l ∈ Lk,∀k

∑

k

y(k)
l ≤ cl ∀l ∈ L

y(k)
l , z

i(k)
j ≥ 0 ∀i, j, k

variables: zi(k)
j , y

(k)
l (2)

Here, w(k) is the weight for each virtual network k. By using
the centralized solver for each virtual network, we can de-
rive the new virtual link capacity updated algorithm which is
expectedly converging faster and better in processing bursty
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traffics than that of [6].
The problem in (2) is the convex problem because the

objective function of this problem is the positive-weighted
sum of concave objective functions (1) and the constraints
are affine with zi(k)

j , y
(k)
l . The problem has coupled vari-

ables zi(k)
j , y

(k)
l so we decouple it by the primal decomposi-

tion method [12]. We fix the the variable y(k)
l to make the

problem only varies with zi(k)
j and the new problem can be di-

vided into many centralized problems of (1). The optimiza-
tion solver CVXOPT [15] which implements the so called
primal-dual interior point method [13] is used to solve each
problem of (1) centrally in the controller of each virtual net-
work.

The results of optimization solver for each sub-problem
are optimal flow rates z∗i(k)

j and link congestion price λ∗(k)
l .

Now, after solving the sub-problem, we need to find the
new virtual link capacity y(k)

l that we have fixed in the previ-
ous step. The updated algorithm is derived from the master
problem as follows:

maximize:
∑

k

w(k)U(k)
(
z∗i(k)

j , y
(k)
l

)

∑

k

y(k)
l ≤ cl ∀l ∈ L

y(k)
l ≥ 0 ∀k, l

variables: y(k)
l (3)

The above master optimization problem is also the convex
problem because it has the same concave objective function
as (2) and the affine constraints. As suggested in [13] for the
convex optimization problem, because it is easy to project
on the non-negative orthant constraint y(k)

l ≥ 0, we simplify
the way to solve the problem (3) by considering the con-
straint y(k)

l ≥ 0 as implicit constraint and solve the problem
with explicit constraint first then project the results on the
implicit constraint domain. The problem with explicit con-
straint has coupled constraint

∑
k y

(k)
l ≤ cl so we use the dual

decomposition [12] to decouple it. We find the Lagrange
function of (3) as follow:

L
(
y(k)

l , μl

)

=
∑

k

w(k)U(k)
(
z∗i(k)

j , y
(k)
l

)
−
∑

l

μl

⎛⎜⎜⎜⎜⎜⎝
∑

k

y(k)
l −cl

⎞⎟⎟⎟⎟⎟⎠

=
∑

k

w(k)U(k)
(
z∗i(k)

j , y
(k)
l

)
−
∑

k

∑

l

y(k)
l μl+

∑

l

μlcl (4)

Note that μl is the dual variable for the master prob-
lem which is different from λ(k)

l , the dual variable of sub-
problems.

We use the subgradient projection method to find the
supremum of problem (4) which has implicit constraint of
non-negative orthant and the variable of y(k)

l . The update

function for y(k)
l is

y(k)
l (t + Ts) =

⎡⎢⎢⎢⎢⎢⎣y(k)
l (t) + α

∂

∂y(k)
l

L
(
y(k)

l , μl

)⎤⎥⎥⎥⎥⎥⎦
+

(5)

where Ts is the time period for updating virtual link capac-
ity in the substrate network and the updated time argument
has been appended in the parenthesis following the variable
y(k)

l . []+ denotes the projection on to non-negative orthant
domain.

Like [13], we have the partial derivative of objective
function at the optimality as the link congestion price so

∂

∂y(k)
l

⎛⎜⎜⎜⎜⎜⎝
∑

k∈K
U(k)
(
z∗i(k)

j , y
(k)
l

)⎞⎟⎟⎟⎟⎟⎠ = λ∗(k)
l (6)

Using (6) we have partial derivative of Lagrange func-
tion as

∂

∂y(k)
l

L
(
y(k)

l , μl

)
= w(k)λ∗(k)

l − μl (7)

To find μl, we define p∗(k) as the optimal value of (1) and p∗
as the optimal value of (3). We have

p∗ =
∑

k

w(k) p∗(k)

∂p∗

∂cl
=
∑

k∈Kl

w(k) ∂p∗(k)

∂cl

μ∗l =
∑

k∈Kl

w(k)λ∗(k)
l

∂y(k)
l

∂cl
(8)

where Kl is the set of virtual networks hosted on substrate
link l.

In practical networks, a service provider prefers to al-
locate all their capacity fairly to increase the quality of ser-
vices. In our system, by constraining on cl =

∑
k∈Kl
y(k)

l , we
allocate fairly all of our residual capacity to virtual network
customers:

∂y(k)
l

∂cl
=

y(k)
l∑

κ∈Kl
y(κ)

l

(9)

Hence, we have from (8), (9) that

μ∗l =
∑

k∈Kl
w(k)λ∗(k)

l y
(k)
l∑

k∈Kl
y(k)

l

(10)

And the final virtual link capacity update function can
be obtained by combining (5),(7),(10) :

y(k)
l (t + Ts)

= y(k)
l (t)+α

⎡⎢⎢⎢⎢⎢⎣w(k)λ∗(k)
l −

∑
k∈Kl
w(k)λ∗(k)

l y
(k)
l (t)

∑
k∈Kl
y(k)

l (t)

⎤⎥⎥⎥⎥⎥⎦
+

(11)

As a summary, in (11), we can find the value of y(k)
l at time

t + Ts from the previously updated value of y(k)
l at time t.

In the recursion, α is a constant stepsize that can be chosen
through experiments to improve the algorithm convergence.
The value of link congestion price λ∗(k)

l in virtual network
k can be obtained by centralized optimization solver. This
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equation also has a reasonable interpretation because if the
weighted rate of utility increase per unit of capacity being
added for a given virtual link l, i.e. the term w(k)λ∗(k)

l , is
greater than the rate of utility increase as averaged over all
the virtual link capacity upgrade, then that virtual link l of
the virtual network k should be allocated more capacity. On
the contrary, if the weighted rate of utility increase per unit
of capacity being added for a given virtual link l is lower
than the rate of utility increase as averaged over all the vir-
tual link capacity upgrade, then that virtual link l should be
assigned less capacity.

3.4 Convergence and Optimality

Theorem: The updated Eq. (11) converges to optimal point
of (2) if:

• The problem (1) is convex optimization.
• The virtual link bandwidth allocation is updated after

the convegence of (1)
• The stepsize α in (11) is small enough or diminishing

(diminishing stepsize usually converge faster constant
stepsize).

Proof: From the above interpretation of (11) about the
principal for increasing and decreasing bandwidth of each
virtual link y(k)

l , the aggregated utility on each physical
link l and hence, the total utility overall substrate network:∑

k w
(k)U(k)(z∗i(k)

j , y
(k)
l ) will be increased after each virtual

link capacity updated period Ts. Because we always keep
cl =

∑
k y

(k)
l , L(y(k)

l , μl) increases monotonically after ev-

ery period of updating virtual link capacity. But, L(y(k)
l , μl)

is concave function so it is only able to increase until the
maximum point which also be the stationary point when y(k)

l

moves to the limited point ỹ(k)
l . At the limited point we have:

w(k)λ∗(k)
l =

∑
k∈Kl
w(k)λ∗(k)

l ỹ
(k)
l∑

k∈Kl
ỹ(k)

l

(12)

It means that at the limited point ỹ(k)
l , the weighted rate

of utility increase per unit of capacity being added for a
given virtual link l is equal to the rate of utility increase as
averaged over all the virtual link capacity upgrade and y(k)

l
does not change anymore.

At the ỹ(k)
l :

∂

∂y(k)
l

L(ỹ(k)
l , μl) = 0 ∀l, k;

∑
k y

(k)
l ≤ cl, and μl(

∑
k y

(k)
l − cl) =

0. The KKT conditions [13] are satisfied for the convex
problem of (3), then the limited point of (11) is the optimal
point of (3).

Because Eq. (1) is converged before the virtual link
bandwidth update time, at y(k)

l = ỹ
(k)
l , we also have zi(k)

j =

z∗i(k)
j and they are the optimal point y∗(k)

l and z∗i(k)
j for the

problem of (2).

4. Implementation

4.1 General Testbed Description

We have built a testbed to implement and evaluate our op-
timization algorithm with a rack of seven computers named
PC1-5 and TA, TB, respectively. Each computer is equipped
with Core 2 quad 2.40 GHz and 4 GBytes of RAM. Ubuntu
OS 11.04 with the core of 2.6.38 has been installed on each
physical computer.

4.2 Logical Model

The logical model of our network is presented in Fig. 3. In
this model, three substrate nodes have been created by in-
stalling OpenFlow switch software v0.8.9r2 on computers
PC1-3 to make them work as PC-based switches. FlowVi-
sor has been used to create a virtualization layer on those
substrate nodes. The virtual network controller has been in-
stantiated by a Python script running on top of the network
operating system NOX. We have written a Python script to
add the switching entries to OpenFlow switches and con-
trol them to forward packets according to VLAN IDs. To
implement end-hosts to split the traffic through paths and
limit the rate of outgoing traffics, we have written a Python
script using Scapy [14] to create two kinds of packets with
VLAN ID = 2 and VLAN ID = 3. And the end-hosts send
the packets to output ports according to the control informa-
tion from the central host manager. This host manager has
been implemented on PC5 by a Python script which com-
municates with all end-hosts and the controller in the corre-
sponding virtual network. This script periodically takes traf-
fic demands from end-hosts and virtual link capacity value
updates from substrate nodes as its inputs and use CVX-
OPT [15] to calculate the optimal rates for all end-hosts

Fig. 3 Logical model.
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and congestion price values for all virtual links in the vir-
tual network. There are three networks used to connect all
elements of system as depicted in Fig. 3. Controller net-
work (172.16.0.x) is used for controllers on PC4 to send
control signals to switches PC1-3. Host control network
(192.168.0.x) is used by the host manager to get information
from end-hosts and controllers as well as to send control sig-
nals to end-hosts. The main network is used for end-hosts
in a virtual network to send traffics to each other. Switches
are connected to the first controller (named ENG) via tcp
port:7000 and the second controller (named SCI) via tcp
port:9000.

4.3 Virtual-Network Centralized Algorithm Implementa-
tion

We have implemented the throughput-sensitive centralized
algorithm on each host manager using Python CVXOPT
[15] with the objective function of maximizing the overall
network throughput, meanwhile keeps the link capacity un-
congested as follows:

max :
∑

i

w(k)
i log

⎛⎜⎜⎜⎜⎜⎜⎝
∑

j

zi(k)
j

⎞⎟⎟⎟⎟⎟⎟⎠−q
∑

l∈Lk

exp
(
u(k)

l

)
(13)

where the utilization u(k)
l of virtual link l can be calculated

from u(k)
l =

H(k)∗z(k)

y(k)
l

and q serves as a weighting coefficient

for regulating the utilization of virtual links. This objective
function is different from [6] in that we add weight w(k)

i to
each demand for controlling the network resources provided

to each demand. This weight is calculated by w(k)
i =

r(k)
i∑

i r(k)
i

,

where r(k)
i is the demand i of virtual network k. End-hosts

TA, TB periodically send the requested demand to the host
manager which calculates the optimal flow rate for each end-
host to send its traffic through each path. Upon receiving this
optimal sending rate, end-hosts then adjust their outbound
flow rate. We use Scapy [14] to create the packets with the
wanted VLAN IDs to split traffic to different paths. For ex-
ample, if end-host TA receives the optimal rate of (100, 40),
it knows that it should send the traffic with the rate of 100
packets/s on VLAN 2 and 40 packets/s on VLAN 3. The
end-host uses Scapy to create and send 100 packets with
VLAN-ID = 2 as well as 40 packets with VLAN-ID = 3 to
switch PC1. Then, at switch PC1, the packets with VLAN-
ID = 2 are forwarded through the upper path with two hops
and the packets with VLAN-ID = 3 are forwarded through
the lower path with one hop.

4.4 Substrate-Network Distributed Algorithm Implemen-
tation

We have implemented our substrate algorithm on each
OpenFlow switch. After each time a host manager com-
pletes calculating the optimal rate for all end-hosts, the host
manager sends the newly updated congestion price to the

OpenFlow switches. Each OpenFlow switch on receiving
the congestion price calculates the new capacity of its vir-
tual links by using the equation that we have derived in (11).
The new virtual link capacity information is then updated to
the host manager, which in turn uses this information in its
capacity constraints to calculate the optimal flow rate for
end-hosts in the next optimization step.

4.5 Simulator

Since our physical testbed is restricted to 7 PCs with 3
switching nodes, we have implemented our algorithm in
MATLAB environment for two nodes topology and Abi-
lene topology [6] to test and compare our algorithm with
the previous approach in larger topology. We not only use
throughput-sensitive utility function for both virtual net-
works as in testbed implementation but also add the delay-
sensitive utility function which tries to minimize the total
delay of network as follows:

min:
∑

i

∑

j

zi(1)
j

∑

l

Hi(1)
l j (pl + f (u(1)

l )) (14)

In our testbed implementation, with two throughput-
sensitive utility functions, congestion price alone is enough
to reflect the demand for more bandwidth of each virtual
link. But in our simulation, the throughput-sensitive utility
function and delay-sensitive utility function are so different
in the form, we have added ∂

∂y(k)
l

U(k)
l to congestion price λ∗l to

better reflect the demand for bandwidth than the congestion
price alone.

5. Evaluation

5.1 Simulation Results

Figure 4 compares the time to convergence between our pro-
posed algorithm and Davinci algorithm [6] in two nodes
topology. The upper graph of Fig. 4 shows that with the
same setting of q = 0.5, w1 = 1, w2 = 105 α = .2 and
r(1)

1 = 110 Mbps, our proposed algorithm needs nearly the
same number of outer iterations, which are the number of
iterations to solve the master problem (3) distributedly, as in

Fig. 4 Comparing with Davinci in two nodes topology.
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Fig. 5 Stepsize α vs. convergence in Abilene topology.

Fig. 6 Traffic on ENG and SCI network.

[6]. But, as showed in the lower graph, our algorithm needs
much shorter time to converge than the one in [6]. The rea-
son for this phenomenon is that for each outer iteration we
need maximum 0.2 seconds to solve optimization problems
on two virtual networks centrally but [6] needs 2 seconds
to solve them distributedly. The more time needed for [6]
to solve problem at each iteration make it converge slower
than our proposed algorithm.

Figure 5 presents the number of iterations to conver-
gence of our algorithm in the Abilene topology. From the
figure, the algorithm converges very slow when stepsize α
is so small and diverses when stepsize α is large. The rea-
son is that when α is large, the searching point will jump
through optimal point after each iteration. Also from the
figure, the graph with demand r(1)

1 = 200 Mbps on delay sen-
sitive network converges faster than the graph with demand
r(1)

1 = 110 Mbps. The reason of this phenomenon is that the
initial capacity for all virtual links of all virtual networks are
set to be 500 Mbps which is the half of each substrate link
capacity. The initial virtual link capacity vector is the initial
point for our optimization algorithm. This initial point is
nearer to the solution of demand 200 Mbps than the solution
of demand 110 Mbps. So, the algorithm with input demand
of 200 Mbps converges faster than the algorithm with input
demand of 110 Mbps.

5.2 Testbed Evaluation Results

Figure 6 depicts the dynamics of actual traffic on ENG vir-
tual network (upper graph) and SCI virtual network (lower

Fig. 7 Time to converge vs. Ts.

graph). This result is based on the demands which are
changed randomly every 40 optimization iterations and α
which is 0.05 at the beginning and being added by 0.05 each
time the demand changes. The substrate link capacity is set
to 5 Mbps. From the figure, the convergence rate increases
after each time demand changes. But there are some pe-
riods such as 120, 200, 320, the convergence rate decreases
even with higher α. This phenomenon is caused by the large
changing in demand. Our algorithm uses the optimal points
from previous optimization period to be the initial point for
the next optimization period. If the initial point is so far
from the demand, our algorithm needs more iterations to
converge.

Figure 7 depicts the virtual link updated period Ts and
the time to convergence in 2 demand patterns which are: in-
crease with 1 Mbps step and 2 Mbps step. From the figure, if
the virtual link update period is smaller than the maximum
time to solve the optimization problem in each virtual net-
work added with the communication time between end hosts
with HostManager of that virtual network which is equal 0.7
in our case, our algorithm will need very long time to con-
verge. If Ts ≥ 0.7 second, the virtual network optimization
problem is guaranteed to be solved completely before the
updated time of our proposed algorithm (11) and our algo-
rithm is converged. When our proposed algorithm converge,
the time to convergence is quite linear with the iteration pe-
riod (Ts). The reason is that the number of iterations needed
to solve the master problem is nearly constant. The linear
increase of time to converge is only caused by the increase
in the updated time period Ts.

Figure 8 shows how virtual capacity of each virtual net-
work adapts when there is a link-down event from iteration
36 − 148. At iteration 36, when the physical link VLAN
3 is down, the capacity which was allocated to both vir-
tual networks ENG (y(1)

2 ) and SCI (y(2)
2 ) from physical link

VLAN 3 is vanished. The capacity allocated to virtual net-
work ENG (y(1)

1 ) and SCI (y(2)
1 ) from physical link VLAN 2

is adjusted in around 20 iterations by our updated Eq. (11)
to converge to the new optimal point that the allocated vir-
tual link capacity are proportional to the demands from both
virtual networks. When the physical link of VLAN 3 is up
again at iteration 148, our updated algorithm immediately
allocates the equal bandwidth 3.5 Mbps to each virtual link
hosted on the physical link VLAN 3. This initial allocation
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Fig. 8 Link recovery.

phenomenon caused by fair allocation of Eq. (9). After the
initial allocation, our algorithm gradually adjusts the allo-
cated capacity to the new optimal point which allocates total
3 Mbps of traffic for the virtual network ENG and 7 Mbps of
traffic for the virtual network SCI.

6. Conclusion

In this paper, we have derived an algorithm to dynamically
allocate the capacity to virtual network links for maximizing
the aggregated utility. With the cloud resident data center
setting in mind, we have used the centralized algorithm to
implement in each virtual network to be suitable with Open-
Flow centralized controller. At the substrate network, we
have derived a new updated algorithm to make use of con-
gestion price which is calculated from the centralized con-
trollers. We have implemented our algorithm in MATLAB
as well as testbed environment and the results show that our
algorithm converge to the optimality faster than the previous
approach so it can use physical resource more effectively.

To make any optimization algorithm work in the real
world, we need to tune many parameters of our algorithm.
The convergence time of our algorithm is based heavily
on the convergence time of each centralized algorithm on
each virtual network. In the future, we intend to improve
the convergence rate of virtual network algorithm by pre-
calculating the optimization problem in virtual networks
with all the input demands and make a mapping table be-
tween traffic demands and primal/dual solutions. When
there is a demand come to the network, the host manager
only needs to find the optimal results from the mapping ta-
ble. Future results will be reported accordingly.
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