
108
IEICE TRANS. COMMUN., VOL.E96–B, NO.1 JANUARY 2013

PAPER

RISE: A Wide-Area Hybrid OpenFlow Network Testbed∗

Yoshihiko KANAUMI†a), Shu-ichi SAITO†,††, Nonmembers, Eiji KAWAI††, Member, Shuji ISHII††, Nonmember,
Kazumasa KOBAYASHI†† ,†††, and Shinji SHIMOJO††,††††, Members

SUMMARY The deployment of hybrid wide-area OpenFlow networks
is essential for the gradual integration of OpenFlow technology into exist-
ing wide-area networks. Integration is necessary because it is impractical
to replace such wide-area networks with OpenFlow-enabled ones at once.
On the other hand, the design, deployment, and operation of such hybrid
OpenFlow networks are often conducted intuitively without in-depth tech-
nical considerations. In this paper, we systematically discuss the technical
aspects of the hybrid architecture for OpenFlow networks based on our
experience so far in developing wide-area hybrid OpenFlow networks on
JGN2plus and JGN-X, which are nation-wide testbed networks in Japan.
We also describe the design and operation of RISE (Research Infrastructure
for large-Scale network Experiments) on JGN-X, whose objective is to sup-
port a variety of OpenFlow network experiments.
key words: OpenFlow, NWGN, testbed networks, operation

1. Introduction

The Internet succeeded in acquiring the position of the most
important infrastructure for cultivating an information soci-
ety. However, its fundamental architecture must overcome
several technical issues to enable this society to grow sus-
tainably. Many researchers around the world have been at-
tacking these issues and publishing technologies that ren-
ovate the current Internet architecture. These are called
Future Internet (FI) or New Generation Network (NWGN)
Technologies (we use the latter term in this paper).

To promote the R&D (research and development)
of NWGN technologies worldwide, NICT (National In-
stitute of Information and Communications Technology)
is operating JGN-X [2], a large-scale distributed network
testbed. In this study, we develop an OpenFlow [3] testbed
called RISE (Research Infrastructure for large-Scale net-
work Experiments) on top of JGN-X.

OpenFlow is one of the most promising technologies
for allowing flexible programmability in its networks. It is

Manuscript received March 2, 2012.
Manuscript revised August 7, 2012.
†The authors are with NEC Corporation, Tokyo, 108-8001

Japan.
††The authors are with National Institute of Information and

Communications Technology, Tokyo, 100-0004 Japan.
†††The author is with Kurashiki University of Science and the

Arts, Kurashiki-shi, 712-8505 Japan.
††††The author is with Osaka University, Ibaraki-shi, 567-0047

Japan.
∗This article is the extended version of our previous literature

[1]. We added a new section (Sect. 6) and revised the content thor-
oughly to include more detailed discussion.

a) E-mail: y-kanaumi@jgn-x.jp
DOI: 10.1587/transcom.E96.B.108

based on Ethernet technology and exports the packet for-
warding control interfaces to an OpenFlow controller (OFC)
outside an OpenFlow switch (OFS), i.e., it implements the
separation of the data plane and the control plane in the
networks. In OpenFlow networks (OFNs), we can there-
fore control packet forwarding freely on each switch, violat-
ing the Ethernet forwarding principles. This feature attracts
much attention from researchers and developers in the area
of NWGN technologies because they can implement their
own NWGN technology in OFNs. In addition, OpenFlow is
also recognized as a technology that provides isolated logi-
cal network slices, which can accommodate NWGN exper-
imental networks as well as production networks.

In this paper, we propose the RISE architecture, a wide-
area OpenFlow testbed, and compile our experiences of
developing and deploying this technology. Our empirical
study contributes to the following three areas.

First, we are focusing on establishing wide-area OFNs.
At the time when OpenFlow was initially invented, cam-
pus networks were the major target for its deployment [4],
[5], which allowed several advantages. For example, cam-
pus networks provide us with more realistic experimental
environments because they are much larger than the in-
laboratory experimental networks usually set up for aca-
demic research. In addition, new technologies deployed
in OpenFlow-based campus networks have a better oppor-
tunity to transfer production network traffic generated by
many advanced real users such as students, faculties, and
administrative staff. The organization of campus networks
is usually geographically-concentrated, and therefore it is
relatively easy to install, configure, and operate new (and
unstable) technologies. However, from the viewpoint of
NWGN technology deployment, we need to expand this
limited scale of OpenFlow experimental environments to
that of wide-area networks.

Therefore, we have been developing a wide-area Open-
Flow network testbed since 2009 [6]. We took the approach
of a hybrid OFN architecture, i.e., our OFNs are built on
top of JGN2plus [7] and JGN-X∗∗ [2] networks. One reason
for this is that the price of wide-area broadband networks is
tremendously high and we cannot purchase one to dedicate
to our OpenFlow testbed. Another, more important, reason
is that we need to develop an OpenFlow transition method,
i.e., an incremental deployment method for OFNs into the

∗∗JGN2plus is the former version of JGN-X.

Copyright c© 2013 The Institute of Electronics, Information and Communication Engineers

KANAUMI et al.: RISE: A WIDE-AREA HYBRID OPENFLOW NETWORK TESTBED
109

existing network infrastructure. To achieve this, we have to
consider the requirements of both the existing networks and
the OFNs.

The second contribution is to share our knowledge of
wide-area OFNs with other R&E (Research and Education)
network organizations [8], [9]. To make our wide-area and
hybrid OFNs work correctly, we need to leverage some
implementation-dependent functions of communication de-
vices, as well as those described in the OpenFlow specifi-
cations. Accordingly, we focus on the practical techniques
required to establish real-world OFNs and their technology
transfer to the world.

Finally, we operate our wide-area OFNs as a RISE
OpenFlow testbed. To achieve this, we develop a service
model, i.e., a framework to accept experimental OFCs. Al-
though the basic mechanism to share OFNs among mul-
tiple users is available in the famous FlowVisor [10], we
must sometimes provide completely independent OFNs si-
multaneously to multiple users. As we mentioned before,
our OFNs are built on existing networks, which incurs some
limitations in functionality and performance. By consider-
ing these limitations, as well as the scenarios in wide-area
OpenFlow network experiments, we have developed the ba-
sic architecture of the RISE testbed.

The rest of this paper is organized as follows. We dis-
cuss the necessity of wide-area OFNs in Sect. 2, before de-
scribing the technical requirements of both OFNs and ex-
isting wide-area networks in Sect. 3. The RISE testbed ar-
chitecture, which satisfies these requirements, is presented
in Sect. 5. We summarize our experiences of deploying and
operating RISE in Sect. 6, and conclude this paper in Sect. 7.

Details of the OpenFlow technology are not described
in this paper. Please refer to the OpenFlow specifications†
[11] for more detailed information. We have also omitted
a detailed description of the experiments conducted during
deployment of RISE. Please refer to our previous literature
[6], [12].

2. Motivation for RISE

In this section, we describe the background of OpenFlow
as an infrastructure technology for NWGN and outline our
motivation for developing RISE, a wide-area OpenFlow
testbed.

2.1 Issues in Experimental Environments for NWGN
Technologies

To overcome the limitations of the current Internet archi-
tecture, a wide-variety of NWGN technologies have been
developed. One of the challenges in the development of
NWGNs is finding wide-area experimental environments for
newly developed technologies. Because the Internet is now
playing the role of the most fundamental infrastructure for
the global information society, it is highly difficult to ac-
cept major changes in its architecture, even if the aim of the
changes is to verify novel technologies for the renovation

of the Internet. More specifically, we need to consider the
following three issues.

The first issue is security. For all organizations and
persons, security is crucial, and an inappropriate response
to a security incident can erode their public confidence in
a technology as well as cause economic loss. Therefore,
even in campus networks where many R&D activities are
conducted, there are many restrictions on using new tech-
nologies, and it is hard to prepare a large-scale experimental
environment.

The second issue is service continuity. Quite nat-
urally, newly developed technologies cannot accumulate
much knowledge of their large-scale operation, and there-
fore may sometimes cause a wide-area functional failure.
Because the Internet is now operating as an essential infras-
tructure for the information society, discontinuity in its ser-
vice is unacceptable for many users.

Finally, we need to consider the economics of R&D.
Recent network equipment deployed in wide-area networks,
such as switches and routers, is often implemented with ded-
icated, proprietary hardware. This means that academic re-
searchers must conduct development jointly with the com-
panies that develop and release such equipment in order
to deploy their original technologies in real wide-area net-
works. On the other hand, the recent development of net-
work equipment is highly competitive and its cost is sky-
rocketing. Therefore, the integration of new technologies
into existing systems is often an unacceptable risk for many
network equipment companies.

2.2 Advantages of OpenFlow

OpenFlow has attracted much attention as a platform that
can solve the issues of NWGN experimental environments
mentioned in the previous subsection. One of the major fea-
tures of OpenFlow is its separation of the data plane and the
control plane (Fig. 1).

Fig. 1 Separation of the data plane and the control plane in OpenFlow.

†In this paper, we refer to version 1.0 of the OpenFlow specifi-
cations because its implementation is widely available. At the time
of writing this paper, there is a newer OpenFlow specification (ver-
sion 1.1), but only a small number of OpenFlow devices support
it.

110
IEICE TRANS. COMMUN., VOL.E96–B, NO.1 JANUARY 2013

In the data plane, OpenFlow adopts the architecture of
current L3 switches without major modification. This al-
lows network equipment companies to utilize existing so-
phisticated hardware technology, and therefore they can af-
ford to develop OFSs. In addition, this Ethernet-friendly
architecture of OpenFlow makes it easy to introduce OFNs
into existing networks.

In the OpenFlow control plane, a centralized architec-
ture is adopted. Users can freely control packet forward-
ing on each switch via the OFC connected to all OFSs.
Utilizing this controllability, users can develop their own
mechanisms for NWGN such as routing, traffic engineer-
ing, multi-casting, and mobile communications, and easily
deploy them to the networks by installing them in the con-
troller. In addition, from an administrative viewpoint, the
centralized architecture is favorable for security manage-
ment as well as trouble shooting.

We can also develop network virtualization mecha-
nisms in OFNs by leveraging the flexible packet forwarding
controllability. FlowVisor provides in-flowspace separation
mechanisms between networks, which allow us to configure
experimental networks that are logically separated from the
production networks shared by all users.

2.3 Motivation for Wide-Area OpenFlow Networks

Although OpenFlow started with campus networks as its ini-
tial deployment target, we cannot ignore its wide-area de-
ployment, especially from the perspective of NWGN R&D.
Clearly, NWGN technologies should cover global networks,
and OFNs should therefore be deployed worldwide and sup-
port global NWGN experiments.

Accordingly, we have been developing and operating
wide-area (nationwide) OFNs on top of JGN2plus and JGN-
X since 2009. To the best of our knowledge, there were no
such wide-area OFNs when we started this project. We de-
vised the architecture of our wide-area OFNs based on the
Ethernet Q-in-Q mechanism, which we will mention later.
Our empirical knowledge was shared with other R&E net-
work developers and operators through documents [6], [12]
and presentations [8], [9].

3. Consideration of Wide-Area Deployment of Open-
Flow

In this section, we describe what we considered in for de-
ploying wide-area OFNs and operating them as an R&D
testbed.

3.1 OpenFlow Functions

Before designing wide-area OFNs, it is important to con-
sider what mechanisms they should incorporate. OpenFlow
provides extremely flexible control of packet forwarding,
and allows users to implement a wide variety of networking
mechanisms. Ultimately, users can replace the current Inter-
net architecture with one of their own. For example, OFN

Fig. 2 Traffic engineering with OpenFlow.

users can develop original mechanisms for network virtual-
ization.

It must be remembered, however, that Open-
Flow is a developing technology and involves various
implementation-dependent issues. Therefore, we should
first define the function and performance requirements in
OFNs, and then elaborate their composition in order to meet
these requirements. In this study, we set the goal of ad-
vanced traffic engineering for each flow in our wide-area
OFNs (Fig. 2). That is, end hosts connected to the OFNs
generate traditional TCP/IP packets and their traffic engi-
neering is operated with OpenFlow.

The details of the traffic engineering in our OFNs can
be described as follows. In each OFSs, one or more dedi-
cated physical ports are allocated to each user. The traffic
flows that are controlled in our OFNs are defined with the
OpenFlow tuple, except for 802.1Q VLAN tags [13]. Users
can define a target flow for control by physical ports, MAC
addresses, IP addresses, TCP/UDP port numbers, and so on.
For example, the packets in a single TCP connection can
be defined as a flow, and OpenFlow can define their control
rules.

In our current OFN design, the 802.1Q VLAN tags are
used for an administrative purpose — we identify the user of
each packet by the VLAN ID attached to it. In other words,
VLAN IDs are employed as user identifiers. With this mech-
anism, we can configure unique slices to allow each user
free usage of all the other tuple space in their slice. In other
words, a user need not consider which MAC addresses, IP
addresses or TCP/UDP port numbers other users are using
in our OFNs. In the example shown in Fig. 2, the control
of web traffic for user A does not affect any kind of traffic
control for user B and C, including web traffic control.

The administrative design whereby we identify users
by the physical ports they use has another advantage from
the viewpoint of network operation. When a specific user’s
traffic causes network trouble due to an unrecoverable error,
we can stop this traffic by shutting down their physical ports.
We adopt this model for accommodating users in the RISE
testbed (we describe RISE in detail in Sect. 5).

On the other hand, users in our OFNs cannot utilize

KANAUMI et al.: RISE: A WIDE-AREA HYBRID OPENFLOW NETWORK TESTBED
111

Fig. 3 OFNs in EVNs.

the VLAN tags for their own traffic control. This imposes a
limitation on connecting user networks in which VLAN tags
are utilized to our OFNs. To overcome this limitation, we
can divide the 12-bit VLAN tag into two parts and provide
one to the users, if the number of users is small enough.
However, this requires per-packet processing of the VLAN
tag and causes an additional overhead.

3.2 Deployment Techniques for OpenFlow Networks

We took the approach of deploying OFNs virtually in ex-
isting wide-area networks. This is because the enormous
cost of dedicated wide-area communication lines between
the OFSs was impractical for exploiting the possibility of
wide-area deployment of OpenFlow when this project com-
menced. In addition, OpenFlow data packets follow the tra-
ditional Ethernet packet format, and it is theoretically possi-
ble to transfer OpenFlow data packets in traditional Ethernet
networks. Therefore, we have investigated how to configure
virtual networks in existing wide-area networks and accom-
modate OFNs within them (Fig. 3).

In this paper, the virtual networks that accommodate
the OFNs are called as Existing Virtual Networks (EVNs).
We consider the following issues of EVNs:

• Utilization of a wide-area Ethernet technology
• Avoidance of MAC address learning

3.2.1 Wide-Area Ethernet Technologies for EVNs

We need to choose virtual network technologies for the ac-
commodation of OFNs. Basically, OpenFlow data pack-
ets are stored in the Ethernet format, and the EVNs must
transfer the Ethernet packets from one OFS to another OFS
without modification. There are a variety of wide-area Eth-
ernet technologies in each network layer that provide this
kind of virtual Ethernet connectivity (Ethernet over Ether-
net, MPLS, IP, UDP, and so on).

At this time, we believe Ethernet- and MPLS-based
technologies are the best for accommodating OFNs. An ad-
vantage of OpenFlow is its explicit and fine-grained con-

Fig. 4 The problem of MAC address learning in EVNs.

trol over packet forwarding. Therefore, it is preferable that
we can statically configure the EVNs, which is allowed by
Ethernet- and MPLS-based virtual network technologies.
When we utilize virtual Ethernet links based on an upper
layer technology such as EtherIP [14], it is relatively diffi-
cult to control the actual (physical) paths, especially in wide-
area networks.

We can also consider using virtual network technolo-
gies other than wide-area Ethernet to virtually extend the
OpenFlow data plane. However, such technologies gener-
ally terminate Ethernet connections on the border between
the OFNs and EVNs, i.e., they modify the MAC addresses
or other Ethernet header fields in OpenFlow data packets.
Therefore, when we use these technologies for EVNs, we
cannot use the Ethernet header fields in the OpenFlow tuple
space.

In addition, current OpenFlow implementations de-
pend on some Ethernet layer technologies, although they are
not formally documented in the OpenFlow specifications.
Thus, when we utilize L3 or upper-layer (non-wide-area
Ethernet) virtual networks for EVNs, we must solve any
relevant implementation issues. For example, many OFSs
use LLDP (Link Layer Discovery Protocol, IEEE 802.1AB
[15]) to obtain link topology information.

Accordingly, it is currently the best practice to utilize
wide-area Ethernet technologies for EVNs.

3.2.2 MAC Address Learning in EVNs

The next issue for consideration is MAC address learning
in EVNs. As we have mentioned, OpenFlow uses Ethernet
packets. OpenFlow also allows us to control each packet
beyond the Ethernet packet forwarding principles. There-
fore, if EVNs work as a virtual Ethernet switch with a MAC
address learning mechanism, they may not be able to trans-
fer the OpenFlow data packets correctly depending on the
forwarding control applied to them (Fig. 4).

A solution to this problem is to separate the MAC ad-
dress learning domain by introducing tunnels (point-to-point
connections in wide-area Ethernet networks) between OFSs
(Fig. 5). With this approach, EVNs can decide where to de-

112
IEICE TRANS. COMMUN., VOL.E96–B, NO.1 JANUARY 2013

liver each OpenFlow data packet by binding the packet to
a tunnel, rather than by learning MAC addresses. In other
words, we must notify the EVNs which tunnel is to be used
for each packet by some other means than MAC addresses.

The simplest approach to achieve this is to utilize sep-
arate physical links between an OFS and a network switch
of EVNs, as shown in Fig. 6(a). In this case, the number
of physical links is the same as that of the tunnels in the
EVNs. Herein, we call an EVN switch an accommodation
switch and a physical link between an OFS and an accom-
modation switch a boundary link. To transmit an OpenFlow
data packet from an OFS to an accommodation switch, the
OFS selects the tunnel to the next hop OFS, i.e., the phys-
ical port of the boundary link for the tunnel, and then the
accommodation switch just adds some tunnel information
to the packet, thus avoiding any confusion from MAC ad-
dress learning in the other physical ports. For the reverse
communication, when the accommodation switch receives
a packet from a tunnel, it removes the tunnel information

Fig. 5 Separation of MAC address learning domains by tunnels.

Fig. 6 Boundary links between an OFS and an accommodation switch.

from the packet and forwards the packet to a boundary link
corresponding to the tunnel. The receiving OFS then identi-
fies the tunnel with the physical port of the boundary link.

When we cannot prepare as many physical boundary
links as there are tunnels, we must extend the tunnels vir-
tually to the OFS. For this, the OFS can add some infor-
mation to a packet, and the accommodation switch uses this
to identify which tunnel to forward the packet through, as
shown in Fig. 6(b). In this case, we suppose that the vir-
tualization (tunnel) techniques utilized in the OFS and the
accommodation switch are different. For example, the OFS
adds an 802.1Q VLAN tag to an OpenFlow data packet to
notify the tunnel to which the accommodation switch should
forward the packet. Then, the accommodation switch reads
the VLAN tag in the packet and adds an MPLS header to
the packet according to the switch configuration. Thus, the
accommodation switch translates the tunnel IDs added by
the OFS into those actually used in the EVNs.

If the virtualization techniques are the same, it means
the tunnels are extended directly to the OFS, as shown in
Fig. 6(c). Similar to the case in which different techniques
are used, the OFS needs to add some information to the
packet to identify the desired tunnel. We will discuss these
virtualization techniques in the next subsection.

Another solution to the MAC address learning issue
is to replace the MAC address with a safe one that does
not confuse the EVNs. This replacement should be done
in the OFS, and the OpenFlow specifications define this
kind of MAC address modification capability in the OFS.
However, the management of the MAC address translation
will be highly complicated (theoretically, we need to define
a unique MAC address for each logical link between the
OFSs) and the per-packet processing cost of MAC address
modification is not negligible.

Accordingly, we conclude that providing logical links

KANAUMI et al.: RISE: A WIDE-AREA HYBRID OPENFLOW NETWORK TESTBED
113

between the OFSs by tunnels in the EVNs is the current best
practice to deploy wide-area OFNs.

4. Wide-Area Ethernet

As discussed in the previous subsection, we adopted an ap-
proach to deploy our OFNs over wide-area Ethernet net-
works. We now briefly survey wide-area Ethernet technolo-
gies†.

4.1 Wide-Area Ethernet with Ethernet

IEEE 802.1Q (Virtual LAN) [13], IEEE 802.1ad (Provider
Bridges) [16], and IEEE 802.1ah (Provider Backbone
Bridges) [17] are categorized as wide-area Ethernet with
Ethernet technologies.

802.1Q Virtual LAN (also called tagged VLAN) is the
most widely used technology for configuring a tunnel in the
Ethernet layer (L2). In an 802.1Q VLAN, a 12-bit VLAN
tag is added to the Ethernet header of a packet and a switch
treats a series of packets with the same tag as those in a
logically separated network (VLAN).

OpenFlow supports the manipulation of the 802.1Q
VLAN tag in its specifications. We can use VLAN tags to
control packet forwarding in OFNs, as well as for configur-
ing tunnels in EVNs. Accordingly, when we utilize VLAN
tags in EVNs, we must avoid using them in the OFNs or split
the 12-bit space into separate spaces for OFNs and EVNs.
In addition, we cannot use VLAN tags to create tunnels in
EVNs in the configuration shown in Fig. 6(b), because the
end-point of a VLAN should usually be configured as a sep-
arate physical port (the untagged port).

802.1Q is currently the only technology directly sup-
ported in the OpenFlow specifications. Therefore, it is the
only technology we can use to extend the tunnels in EVNs
to an OFS, as shown in Fig. 6(c). Actually, the latest (at the
moment of writing this paper) OpenFlow specification ver-
sion 1.3 supports other technologies such as Q-in-Q, MAC-
in-MAC, and MPLS (we will discuss those later). However,
those were not supported by the hardware-based switches
available when we designed and deployed the OpenFlow
networks.

IEEE 802.1ad Provider Bridging (also called Q-in-Q)
adds an extra VLAN tag to an already tagged VLAN packet.
When we use Q-in-Q in the EVNs, a Q-in-Q packet is for-
warded from each switch according to the most recently
added VLAN tag and the destination MAC address. Q-in-Q
is now supported by many low-end Ethernet switches, and
therefore we can configure EVNs that accommodate OFNs
at low cost.

However, when we use Q-in-Q in EVNs with the con-
figuration shown in Fig. 6(b), a VLAN tag needs to have
been added to the packet in the OFNs before it enters the
EVNs, as the tag is used to identify the desired tunnel in
the EVNs. In other words, the VLAN tag space should be
reserved for tunnel selection in EVNs and cannot be freely
utilized by the OpenFlow users (applications). This is basi-

cally because L2 switches that support Q-in-Q usually add
an extra VLAN tag to a packet, according to their configu-
ration, based on physical ports or VLAN tags.

Another issue is MAC address learning in EVNs. Al-
though the MAC address learning domains are separated be-
tween the tunnels, an accommodation switch maintains a
MAC address table for each tunnel. Therefore, when a huge
number of devices are connected to the OFNs and commu-
nicate with each other through a specific single tunnel, a
shortage of MAC address table entries may occur.

IEEE 802.1ah Provider Backbone Bridging (also called
MAC-in-MAC) adds extra source and destination MAC ad-
dresses and a VLAN tag to an Ethernet packet, and uses
them for packet forwarding in virtual networks. In other
words, MAC-in-MAC can completely hide the original Eth-
ernet header information in EVNs. Compared with Q-in-Q,
MAC-in-MAC is superior as it is more tolerant to the issue
of MAC address learning.

On the other hand, when we use MAC-in-MAC in the
configuration shown in Fig. 6(b), it suffers from the same
limitation as Q-in-Q does — packets from OFNs must be
VLAN-tagged beforehand. In addition, low-end Ethernet
switches rarely support MAC-in-MAC.

4.2 Wide-Area Ethernet with MPLS

The MPLS technology adds information (an MPLS label)
between the L2 and L3 headers, and each packet is for-
warded according to this information. Although MPLS is as
mature as other L2 technologies, such as Q-in-Q and MAC-
in-MAC, utilizing MPLS is an expensive approach because
only the network switches/routers for core networks support
it.

To configure Ethernet tunnels with MPLS, we can use
Ethernet over MPLS (EoMPLS) [18] or Virtual Private LAN
Service (VPLS) [19]. Because VPLS is basically for con-
necting more than two user networks and uses MAC address
learning mechanisms, we focus on EoMPLS in this paper.

EoMPLS maintains the mapping between Ethernet
VLAN tag information and MPLS label information on the
boundary of the tunnels. Similar to MAC-in-MAC, EoM-
PLS do not refer to the MAC addresses in EVNs and it does
not suffer from the MAC address learning issue. However,
EoMPLS has the same VLAN tag issue in OFNs as the other
technologies, i.e., it requires packets in OFNs to be VLAN-
tagged.

4.3 Summary of Wide-Area Ethernet Technologies for
EVNs

Table 1 summarizes the wide-area Ethernet technologies de-
scribed in this paper. Basically, because we should allow
users to employ the VLAN tag, it is best to configure as
many physical boundary links as there are tunnels in EVNs,

†We describe only the minimum necessary information. For
detailed information, please refer to the protocol specifications.

114
IEICE TRANS. COMMUN., VOL.E96–B, NO.1 JANUARY 2013

Table 1 Wide-area Ethernet technologies and their configurations.

Technology Fig. 6(a) Fig. 6(b) Fig. 6(c)

Tagged VLAN OK∗1∗2 – OK∗1∗2
Q-in-Q OK∗2 OK∗1∗2 OK∗2∗3
MAC-in-MAC OK OK∗1 OK∗3
EoMPLS OK OK∗1 OK∗3

∗1 User cannot use the VLAN tag.
∗2 EVNs learn MAC addresses.
∗3 Not supported by the OpenFlow specification

version 1.0.

and use Q-in-Q, MAC-in-MAC, or EoMPLS to configure
these tunnels. When we use Q-in-Q, the issue of MAC ad-
dress learning in EVNs must be considered; we need to man-
age the number of MAC addresses used in an experiment.
Note that we will be able to manage the tunnels directly
in the OpenFlow switches as shown in Fig. 6(c), because
newer versions of OpenFlow specification support Q-in-Q,
MAC-in-MAC, and MPLS and many venders are develop-
ing OpenFlow switches that conform those specifications.

5. Design and Deployment of RISE

In this section, we describe the design and deployment of
the RISE testbed infrastructure. This is based on the con-
siderations in Sect. 3 as well as the technical limitations of
constructing real EVNs on JGN2plus and JGN-X.

5.1 Design of RISE

5.1.1 Network Technologies for EVNs

We adopted the Ethernet Q-in-Q technology when con-
structing EVNs for RISE for two reasons. First, we decided
to use 802.1Q VLAN tags as user identifiers as we explained
in Sect. 3.1, and therefore we cannot use them to create tun-
nels in EVNs. Second, there are some switches in JGN2plus
that support neither MAC-in-MAC nor MPLS-based tunnel-
ing technologies.

Accordingly, we were naturally led to the basic archi-
tecture depicted in Fig. 6(a), i.e., we configured as many
physical boundary links as the tunnels (logical links) be-
tween OFSs. On the other hand, this architecture with Q-
in-Q has an issue of MAC address learning in EVNs as we
summarized in Table 1. Therefore, we need to be careful
about the number of MAC addresses used by the users.

5.1.2 Identifiers

We now describe the identifiers defined for managing enti-
ties in RISE, such as end-users, OFNs, and EVNs. Figure 7
shows the relationships between these entities.

First, each end-host connected to RISE is not managed
by its independent ID. Instead, we allocate some dedicated
physical ports to each user for their experiments, and iden-
tify all communication through those ports as belonging to
that user. To achieve this, we define an in-RISE unique

Fig. 7 Entities in RISE and their identifiers.

802.1Q VLAN ID to each user, and the OFSs attach this
ID to every packet coming from the user’s ports.

The physical OFSs of RISE are NEC IP8800 switches,
in which we can configure multiple logical instances. Us-
ing this switch virtualization mechanism, we allocate a ded-
icated logical OFS instance to each user and bind the user’s
VLAN ID to the logical instance. To identify these logical
OFS instances uniquely in RISE, we generate their DPID
(OFS ID used by the OFC) by concatenating the in-RISE
unique site ID, the in-site unique OFS ID, and the VLAN
ID (user ID).

From the viewpoint of EVNs (JGN-X), we need Q-in-
Q tunnels between the OFSs. Before configuring OFNs for
RISE, we asked the JGN-X network operation group to set
up these tunnels and obtained the outer VLAN IDs and port
configuration information of the accommodation switches.

5.2 Basic Architecture of RISE

Next, we describe the RISE architecture. A basic set of two
OFSs and one accommodation switch are installed in each
site (OpenFlow access point) in JGN-X (Fig. 8). One of the
two OFSs is called an edge OpenFlow switch (E-OFS) and
the other is a distribution OpenFlow switch (D-OFS).

The E-OFS directly accommodates end-user connec-
tions. Therefore, all the user physical ports are allocated in
those E-OFSs. An E-OFS adds a VLAN tag to packets com-
ing from a user port, and removes a VLAN tag from packets
going to a user port.

The D-OFS provides physical connections between the
OFNs and the EVNs (tunnels). For this purpose, we config-
ure OpenFlow-enabled ports and OpenFlow-disabled ports
in a D-OFS and connect them with physical links, which we
call hard loops in this paper. By selecting an output port
from the OpenFlow-enabled ports, we can control the for-
warding paths between the OFSs from the OFNs viewpoint.
From the EVNs perspective, the boundary is the OpenFlow-
disabled ports in the D-OFSs, for which we configure Q-in-
Q. Naturally, the number of hard loops in a D-OFS should
be at least the number of Q-in-Q tunnels between the D-OFS
and the D-OFSs in other sites.

KANAUMI et al.: RISE: A WIDE-AREA HYBRID OPENFLOW NETWORK TESTBED
115

Fig. 8 A basic set of two OFSs and one accommodation switch in RISE.

By using an E-OFS and a D-OFS, we can separate the
design of the logical connections between the OFSs from the
design of the physical links between the OFSs and EVNs.
The best scenario is that we prepare many (depending on the
number of physical ports the D-OFS implements) physical
hard loops in the D-OFS and many (possibly full-mesh) log-
ical tunnels in EVNs beforehand, and then flexibly modify
the mapping between the hard loops and the tunnels accord-
ing to user requests.

We strongly believe our architecture has the following
three advantages. Firstly, the minimum number of physical
connections between the accommodation switch and the D-
OFS is 1†, and therefore we can minimize the usage of phys-
ical ports in the accommodation switches, which are shared
by other experimental environments deployed in JGN-X.
Secondly, we can easily add OpenFlow access points to our
infrastructure using the spare hard loops configured in D-
OFS beforehand. Thirdly, our architecture provides flexi-
bility in its logical configuration, meaning that we can re-
duce the physical modifications necessary, which naturally
reduces the operating expense (OPEX) of our infrastructure.

On the other hand, our architecture has a drawback that
we need two OFSs at each site. This means that the OPEX as
well as the capital expenditure (CAPEX) worsens. However,
OPEX of a network infrastructure generally grows under-
linearly against the number of switches. As for CAPEX of
the RISE infrastructure, the cost of OpenFlow switches are
much lower than that of the communication lines. There-
fore, the drawback of our architecture is acceptable at least
for us.

5.3 Path Control Mechanisms

We now explain the mechanisms of traffic engineering us-
ing the simple network example†† depicted in Fig. 9. In this
example network, a normal TCP/IP packet from the host on
the left side is transferred to the host on the right side via
site 1, site 2, and site 3. More precisely, the packet traverses
E-OFS 1, D-OFS 1, site 1, site 2, D-OFS 2, site 2, site 3, D-

Fig. 9 Example of simple OFNs.

OFS 3, and E-OFS 3.
First, the left host generates a normal Ethernet packet

and sends it to E-OFS 1. After E-OFS 1 receives the packet,
it determines the VLAN ID, which is equal to the user ID,
depending on the receiving physical port number and adds
the ID to the packet. E-OFS 1 searches its flow tables using
the packet header information and finds that it has to forward
the packet to the hard loop connected to the tunnel between
site 1 and site 2. After the packet is forwarded to the hard
loop, an extra Q-in-Q tag is added to the packet header and
then the packet is transferred from site 1 to site 2, where it
reaches D-OFS 2 and has its Q-in-Q tag removed. D-OFS 2
then searches its flow tables using the packet header infor-
mation and forwards the packet to the hard loop connected
to the tunnel between site 2 and site 3. Similar to the pre-
vious in-tunnel transfer, an extra Q-in-Q tag is added to the
packet, it travels through the Q-in-Q tunnel, and the Q-in-
Q tag is removed at D-OFS 3. After the packet reaches an
OpenFlow-enabled port of D-OFS 3, the packet is forwarded
to E-OFS 3 according to its flow table information. E-OFS 3
receives the packet, and determines that it has to forward
the packet to the host on the right-hand side of Fig. 9 from
its flow table information. E-OFS 3 then removes the VLAN
ID (user ID) from the packet and delivers it to the right host.

5.4 RISE Topology

Figure 10 shows the topology of RISE networks. The EVNs
and their switches are shown in the lower part of the figure,
and the OFNs and OFSs are shown in the upper part. All of
the OFNs are logical (virtual) networks.

Our RISE networks can benefit from the high level
of redundancy in the JGN-X physical network design (not
shown in the figure). In the actual design of the logical con-
nections between OFSs, we can reflect the physical redun-
dancy in the logical redundancy. When we require more log-
ical redundancy in the OFNs, we can configure some more

†In the current RISE infrastructure, we prepared multiple phys-
ical connections between an accommodation switch and a D-OFS
because the bandwidth of each connection is just 1 Gbps which is
not enough to accommodate multiple simultaneous experiments.
For the same reason, we prepared multiple physical connections
between a D-OFS and an E-OFS.
††A simple naming rule is used for this explanation, which is

slightly different from that of RISE.

116
IEICE TRANS. COMMUN., VOL.E96–B, NO.1 JANUARY 2013

Fig. 10 RISE network topology.

redundant links using the spare hard loops.

6. Lessons Learnt from the Deployment of RISE

In this section, we describe the lessons learnt from the de-
ployment and operation of the RISE testbed networks. From
a technical viewpoint, OpenFlow is highly dependent on
traditional Ethernet switch technology. However, the de-
ployment and operation of OFNs are partially different from
those of Ethernet-based networks. In addition, OpenFlow
allows users to control their traffic at a low level. There-
fore, we should be conservative in the operation of OFNs to
prevent network troubles.

6.1 Incremental Deployment of OFNs

To achieve advanced traffic engineering in OFNs, it is highly
important to prepare redundant paths in them, which allows
us many options for traffic control. On the other hand, re-
dundant paths mean that, if we make an incorrect config-
uration, loop packet forwarding can occur, which causes a
severe traffic load in the loop paths and their switches. To
avoid this kind of incorrect configuration, we recommend
configuring small-scale tree-topology OpenFlow networks
and validating the configuration and behavior of the net-
works at the outset. It is then possible to take steps towards
expansion, inclusion of redundant paths, and traffic controls
using these paths.

6.2 Information Sharing with Users about Their Experi-
ments

As described above, incorrect configuration of OFC/OFSs
can make the OFSs forward user packets to unexpected
ports. Unfortunately, it is often difficult for OFN operators
to know whether such traffic control is intended by the user
or not. Sometimes, the only option for OFNs operators is
a compulsory shutdown of the physical ports that have sent
more packets than the pre-defined threshold. Therefore, the
OFN operators should share sufficient information about the
traffic engineering conducted in OFNs by the users, define
the traffic threshold for port shutdown, and achieve an agree-
ment with the users about this threshold and the possibility

of compulsory port shutdown.

6.3 Separation of the Data Plane, Control Plane, and Man-
agement Plane

We should prepare separate physical ports for user-data
transfer, secure channels, and remote access. As mentioned
above, we sometimes need to shutdown physical ports for
user-data transfer. If we share a physical port on an OFS for
these purposes, its shutdown renders the OFS uncontrollable
from the OFC or the remote terminal.

It is also important to protect communication networks
for remote access by preparing separate VLANs for secure
channels and remote access. This is because a secure chan-
nel can easily be overloaded by packets from unregistered
flows, and in that case we can stop such traffic by shutting
down the VLAN for the secure channel. As for remote ac-
cess ports, we should not modify their configuration except
in case of emergency.

6.4 Preparation for Uncontrollable OFSs

When loop traffic occurs, the OFSs on the paths become
overloaded and user packet transfer, control packet transfer,
and remote access on them can be almost impossible. In
this case, we may try to ask the EVN operators to shutdown
the tunnels between the OFSs. However, such an operation
can also be difficult because the switches that create the tun-
nels can be overloaded. Accordingly, we should introduce a
mechanism that enables us to power-off the OFSs remotely,
even in the worst case.

6.5 Physical Location of the OFC

In OFNs, the OFC can be the single point of failure. A
technical problem on the OFC can cause the malfunction
of whole OFNs. Therefore, we should carefully choose the
physical location of the OFC to be reachable by an operator
in a short time, as well as preparing a spare OFC.

6.6 Operational Cooperation between OFNs and EVNs

When OFNs are deployed virtually over wide-area EVNs

KANAUMI et al.: RISE: A WIDE-AREA HYBRID OPENFLOW NETWORK TESTBED
117

and are operated by different groups, their cooperation is in-
dispensable. For example, even when an unexpected packet
behavior is observed in an OFN, the OFN operators may
not be able to solve it without the prompt assistance of the
EVN operators. Therefore, it is important to establish a co-
operative consensus for the operational procedures between
OFNs and EVNs.

When OFNs are constructed over multiple wide-area
EVNs connected with each other, or when multiple OFNs
are connected with each other, we need more complex coor-
dination between different infrastructures, users, operation
groups, organizations, and so on. The first step to achiev-
ing this should be to clarify what traffic control mechanisms
to deploy in OFNs, as we discussed in Sect. 3.1. Without
these, it is highly difficult to establish appropriate coordina-
tion among the operation groups because operational proce-
dures for trouble shooting become too wide-ranging.

7. Conclusions

In this paper, we described the motivation, design, technolo-
gies, and deployment of RISE, a wide-area OFN testbed.
Actually, several demonstrations were conducted on RISE
[6], [12], which showed the high potential of the wide-area
deployment of OFNs.

Our future work will take the following three direc-
tions. The first is the introduction of MPLS-based tunneling
technology (EoMPLS) in EVNs, because the current JGN-
X infrastructure deploys new MPLS-enabled switches. We
expect a lower OPEX with EoMPLS than with the current
Q-in-Q as we need not worry about the MAC address learn-
ing issue.

Second, we will improve the management mechanism
of user slices. The current design of RISE enables the es-
tablishment of multiple user slices with their management
based on physical ports. Thus, an independent OFC can be
connected to a user slice bound to separate (dedicated) phys-
ical ports. On the other hand, wide-area EVNs are physi-
cally shared among users, and we need to develop more so-
phisticated coordination mechanisms for logical and physi-
cal resource sharing among the users. To achieve this, we
also need to establish closer cooperation between RISE and
JGN-X (EVNs).

Finally, we will move forward to OpenFlow testbed
interconnections. Recently, several research projects have
developed wide-area OpenFlow infrastructure, such as the
OS3E project [20] in the United States and the OFELIA
project [21] in the EU. We expect to connect RISE to these
OpenFlow testbeds and develop a federation mechanism for
both the data plane and the control plane among different
organizations.

Acknowledgments

We would like to express our special thanks to the members
of the JGN-X/JGN2plus network operation group for their
support.

References

[1] Y. Kanaumi, S. Saito, E. Kawai, S. Ishii, K. Kobayashi, and S.
Shimojo, “Deployment and operation of wide-area hybrid Open-
Flow networks,” Proc. Fourth IEEE/IFIP International Workshop on
Management of the Future Internet (ManFI 2012), Maui, Hawaii,
USA, April 2012.

[2] National Institute of Information and Communications Technology,
“JGN-X.” http://www.jgn.nict.go.jp/english/index.html

[3] Open Networking Foundation, “OpenFlow.” https://www.opennet
working.org/

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow: En-
abling innovation in campus networks,” ACM SIGCOMM Com-
puter Communication Review, vol.38, no.2, pp.69–74, April 2008.

[5] K.K. Yap, M. Kobayashi, D. Underhill, S. Seetharaman,
P. Kazemian, and N. McKeown, “The stanford OpenRoads de-
ployment,” Proc. Fourth ACM International Workshop on Wireless
Network Testbeds, Experimental Evaluation and Characterization
(WiNTECH), Beijing, China, Sept. 2009.

[6] Y. Kanaumi, S. Saito, and E. Kawai, “Deployment of a pro-
grammable network for a nation wide R&D network,” Proc. 2nd
IEEE/IFIP International Workshop on Management of the Future In-
ternet (ManFI 2010), Osaka, Japan, April 2010.

[7] National Institute of Information and Communications Technology,
“JGN2plus.” http://www.jgn.nict.go.jp/jgn2plus archive/english/
index.html

[8] Y. Kanaumi, “Openflow switch demonstration at GENI conference
3rd on JGN2plus/APAN,” 27th APAN Meeting, March 2009.

[9] Y. Kanaumi, “Large-scale OpenFlow testbed in Japan,” The 31st
APAN Meeting, Feb. 2011.

[10] R. Sherwood, G. Gibb, K.K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Can the production network be the
test-bed?,” Proc. 9th USENIX Symposium on Operating Systems
Design and Implementation, Vancouver, BC, Canada, Oct. 2010.

[11] “OpenFlow switch specification, version 1.0.0,” Dec. 2009.
http://www.openflow.org/documents/openflow-spec-v1.0.0.pdf

[12] Y. Kanaumi, S. Saito, and E. Kawai, “Toward large-scale pro-
grammable networks: Lessons learned through the operation and
management of a wide-area openflow-based network,” Proc. 6th
International Conference on Network and Services Management
(CNSM 2010), Niagara Falls, Canada, Japan, Oct. 2010.

[13] “IEEE 802.1Q – Virtual LANs.”
[14] R. Housley and S. Hollenbeck, “EtherIP: Tunneling Ethernet frames

in IP datagrams,” RFC 3378 (Informational), Sept. 2002.
[15] “IEEE 802.1AB — Station and Media Access Control Connectivity

Discovery.”
[16] “IEEE 802.1ad – Provider Bridges.”
[17] “IEEE 802.1ah – Provider Backbone Bridges.”
[18] L. Martini, E. Rosen, N. El-Aawar, and G. Heron, “Encapsulation

methods for transport of Ethernet over MPLS networks,” RFC 4448
(Proposed Standard), April 2006. Updated by RFC 5462.

[19] M. Lasserre and V. Kompella, “Virtual private LAN service (VPLS)
using label distribution protocol (LDP) signaling,” FC 4762 (Pro-
posed Standard), Jan. 2007.

[20] “Open Science, Scholarship and Service Exchange (OS3E).”
[21] “OpenFlow in Europe — Linking Infrastructure and Applications.”

118
IEICE TRANS. COMMUN., VOL.E96–B, NO.1 JANUARY 2013

Yoshihiko Kanaumi received an M.E. de-
gree from the Graduate School of Engineering
Science, Osaka Prefecture University, Osaka,
Japan, in 1998 and is currently a Ph.D. candidate
in the Graduate School of Engineering, Univer-
sity of Tokyo, Japan. He joined NEC Corpora-
tion in 1998 and now works in IP network di-
vision. He has been engaged in the develop-
ment of hardware architectures for routers and
of SDH/SONET, ATM, and IP networks. He has
also been involved in research at the National

Institution of Information and Communication Technology (NICT) on the
operation and management of the Future Internet, including the OpenFlow
controller and SDN infrastructure. He has been a member of WIDE Project,
Cyber Kansai Project, and also Network Operation Center of NICT JGN-X.
He was an NOC (Network Operation Center) member of the Interop Tokyo
2003 to 2010.

Shu-ichi Saito received an M.E. degree
from the Graduate School of Engineering Sci-
ence, Iwate University, Iwate, Japan, in 2003.
He joined NEC Corporation in 2003 and now
works in IP Network Division. He has been en-
gaged in the development of hardware architec-
tures for routers and OpenFlow Swiches. He
has also been involved in research at the Na-
tional Institution of Information and Communi-
cation Technology on the operation and man-
agement of the Future Internet, including the

SDN/OpenFlow Network. He has been a member of Network Operation
Center of NICT JGN-X. He was an NOC (Network Operation Center) team
member of the Interop Tokyo from 2010.

Eiji Kawai received Ph.D. in informa-
tion systems from Nara Institute of Science and
Technology (NAIST) in 2001. From 2000 to
2003, he was an awarded researcher with Japan
Science and Technology Corporation (JST).
From 2003 to 2009, he worked for graduate
school of information science, NAIST as assis-
tant professor and associate professor. In 2009,
He joined National Institute of Information and
Communications Technology (NICT), and now
he is director of the network testbed research

and development laboratory.

Shuji Ishii received an M.E. degree from the
Graduate School of Computer Science, Univer-
sity of Electro-Communications, Tokyo, Japan,
in 1992. He joined NEC Corporation in 1995
and now works in Cloud System Research Lab-
oratories. He has been engaged in the devel-
opment of the IPv6 (IPSec) protocol stack for
routers and hosts at NEC as well as research
on software architectures for the OpenFlow con-
troller.

Kazumasa Kobayashi received his B.S.
in Mathematics from the Okayama University
of Science, Okayama, Japan. From 1988 to
1993, He worked for Digital Equipment Corpo-
ration Japan, Educational division. He received
his M.E. and D.E. degrees in computer science
from Nara Institute of Science and Technolo-
gies, Nara, Japan, in 1995 and 2000, respec-
tively. From 1999 to 2003 he was an Assis-
tant Professor in Kurashiki University of Sci-
ence and the Arts, Okayama, Japan. He has

been a member of WIDE Project, Cyber Kansai Project, Okayama Informa-
tion Highway project, and also a director of Network Operation Center for
NICT JGN-X network. His research interests include technologies for mul-
timedia communication over high speed network, network inter-operability,
network management, network security for the Internet and Next Genera-
tion Internet for wide area distirbuted computing environment. He was an
NOC (Network Operation Center) member of the Interop Tokyo 1995 to
2012.

Shinji Shimojo received the M.E. and
Ph.D. degrees from Osaka University in 1983
and 1986, respectively. He was an Assistant
Professor with the Department of Information
and Computer Sciences, Faculty of Engineering
Science at Osaka University from 1986, and an
Associate Professor with Computation Center
from 1991 to 1998. During this period, he also
worked for a year as a Visiting Researcher at the
University of California, Irvine. He has been a
Professor with the Cybermedia Center (then the

Computation Center) at Osaka University since 1998, and from 2005 to
2008 had been the director of the Center. He is an executive researcher at
National Institute of Information and Communications Technology and a
director of Network Testbed Research and Development Promotion Cen-
ter Network Testbed Research and Development Promotion Center. His
current research work is focusing on a wide variety of multimedia applica-
tions, peer-to-peer communication networks, ubiquitous network systems,
and Grid technologies. He was awarded the Osaka Science Prize in 2005.
He is a member of IEEE and IPSJ fellow.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

