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Abstract—End-host profiling by analyzing network traffic
comes out as a major stake in traffic engineering. Graphlet con-
stitutes an efficient and common framework for interpreting host
behaviors, which essentially consists of a visual representation as
a graph. However, graphlet analyses face the issues of choosing
between supervised and unsupervised approaches. The former can
analyze a priori defined behaviors but is blind to undefined classes,
while the latter can discover new behaviors at the cost of difficult
a posteriori interpretation. This paper aims at bridging the gap
between the two. First, to handle unknown classes, unsupervised
clustering is originally revisited by extracting a set of graphlet-in-
spired attributes for each host. Second, to recover interpretability
for each resulting cluster, a synoptic graphlet, defined as a visual
graphlet obtained by mapping from a cluster, is newly developed.
Comparisons against supervised graphlet-based, port-based,
and payload-based classifiers with two datasets demonstrate the
effectiveness of the unsupervised clustering of graphlets and
the relevance of the a posteriori interpretation through synoptic
graphlets. This development is further complemented by studying
evolutionary tree of synoptic graphlets, which quantifies the growth
of graphlets when increasing the number of inspected packets per
host.

Index Terms—Internet traffic analysis, microscopic graph
evolution, unsupervised host profiling, visualization.

I. INTRODUCTION

A N ESSENTIAL task in network traffic engineering stems
from host-level traffic analyses, where the behavior of a

host is characterized based on traffic (i.e., packet sequence) gen-
erated from the host. Host-level traffic analyses enable to find
users of specific applications for the purpose of traffic control, to
identify malicious or victim hosts for security, and to understand
the trend of network usage for network design and management.
Flow analysis, which also constitutes an important networking
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Fig. 1. Examples of graphlets. Traffic from a single source host is represented
as a graph connecting attributes such as proto, srcPort, dstPort, and dstIP.
(a) Host scan for a destination port. (b) Peer to peer.

stake, can be fruitfully complemented by host profiling (e.g., by
breaking down host behaviors into flow characteristics).
Numerous attempts have been made to develop statistical

methods for host profiling. Such methods aim at overcoming
packet encryption, encapsulation, use of dynamic ports, or
dataset without payload—situations that impair the classical
approaches relying on payload inspection [17], [24], [26] and
port-based rules [4]. The most recently proposed ones are
based on heuristic rules [15], statistical classification proce-
dures [18], [22], [27], Google database [28], or macroscopic
graph structure [10], [11], [13], [30].
In particular, an effective yet heuristic approach to host

profiling is based on graphlets [14], [15], [19]. A graphlet
is a detailed description of host communication patterns as
a graph, as illustrated in Fig. 1. For each flow, the 5-tuple
defining it (proto, srcIP, dstIP, srcPort, dstPort) gives a set
of attributes , and the communication pattern of
a host is the union, for all flows, of edges connecting nodes
associated to flow’s attributes. This leads to diverse visual
shapes of graphlets depending on the host’s flows. The graphlet
representation facilitates the intuitive analysis of differences
and resemblances among host behaviors, whereas conventional
approaches directly handle numerical values of statistical
features, which are difficult to interpret.
However, as for any host-profiling approach, the use of

graphlets faces the classical issue of choosing supervised
versus unsupervised procedures. Supervised approaches rely
on a priori determined classes or models of graphlets [15],
predefined by human experts in a necessarily limited number,
and these approaches cannot substantially classify new or un-
known host behaviors. Unsupervised approaches are adaptive
insofar as the data directly define the output classes of graphlets
and can discover behaviors never observed before. These
approaches, however, potentially produce clusters composed of
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a large number of numerical features that cannot receive easy
meaningful or useful interpretation.
This paper aims at bridging the gap between the two types

of approaches. The main idea for this is the combination of
two techniques: To avoid the limitation of supervised approach,
we use an unsupervised clustering of graphlets that is able to
capture previously unknown classes; to ease the difficulties of
unsupervised approach, the resulting clusters are revisualized
into synoptic graphlets that allow us to interpret the clusters
obtained. Our approach is evaluated with two large datasets of
traffic collected on two different links (Section III). This paper
is organized along three contributions.
First, the classical problem of supervised classification is re-

visited (Section IV). This investigation comprises two aspects:
a list of graphlet-based features is proposed to quantify in a
relevant way the visual graphlet shape associated with each
host; an unsupervised clustering method is applied to these
features to yield classification in terms of graphlet shapes.
Comparisons against a supervised graphlet-based classifier
(BLINC [15]), a port-based one, and a payload-based one
allow us to check that most clusters match well-known host
behaviors. This result shows that our method makes it possible
to discover unknown graphlets, which avoids the problem faced
by supervised approaches.
Second, the issue of automatically providing interpreta-

tion of the output of the unsupervised clustering is addressed
(Section V). We solve the inverse problem of reconstructing
a synoptic graphlet, defined as a graphlet inferred from each
obtained cluster, by using an original mapping of the cluster
attributes (cluster centroid) into a graphlet. Our development
of synoptic graphlets shows that an interpretable meaning can
be associated automatically to each cluster without any a priori
expertise. The effectiveness of synoptic graphlets, which suc-
cessfully provide interpretability for unsupervised approaches
as shown in this paper, ends up in bridging the gap between
supervised and unsupervised methods.
Third, the nature of host behavior is further studied via syn-

optic graphlets (Section VI). The use of synoptic graphlets is
expanded to creating an evolutionary tree, which explores the
visually intuitive growth of a set of synoptic graphlets as a func-
tion of the number of inspected packets per host. This study
is useful in integrating host-level traffic characteristics of dif-
ferent in an interpretable manner, and in quantifying the order
of magnitude beyond which further increase does not lead
to substantially more relevant host profiling, i.e., how many
packets we need to profile hosts.

II. PRELIMINARIES

Before turning to themethod itself and the datasets used in the
next sections, we recall the definition of graphlets in the context
of Internet traffic and discuss related work. Then, we propose
an overview of our approach.

A. Graphlet

A graphlet is defined as a graph having the following char-
acteristics in the context of network communication: 1) The
graph is composed of several columns of nodes,
where each column represents one attribute of packets or flows;

2) a node (vertex) in a column is a unique instance of the at-
tribute; and 3) there is an edge between two nodes of neigh-
boring columns if at least one packet/flow has the two corre-
sponding attributes. Columns of a graphlet are usually related to
flow attributes (5-tuple): proto (protocol number), srcIP (source
IP address), dstIP (destination IP address), srcPort (source port
number), and dstPort (destination port number), which are spec-
ified in the header field of every packet.
Fig. 1 illustrates two manually annotated examples of

graphlets drawn with packets per source host.
Fig. 1(a) shows that the source host, which is represented as the
single node in srcIP column, sends packets to a specific desti-
nation port of many destination hosts (almost one packet per
flow); This suggests that the source host is a malicious scanner
aiming to find hosts running a vulnerable application corre-
sponding to the port. Fig. 1(b) displays a host communicating
with several hosts without any specific source/destination port,
and hence this host is a peer-to-peer user (not server or client).
As shown in these examples, a strong merit of graphlets is
the visual interpretability of host characteristics as compared
to examining a large number of raw packet traces or directly
handling a set of numerical statistics.
We draw a graphlet from host-level traffic. Here, host-level

traffic is defined as the sequence of packets sent from the
host; Headers in those packets contain source IP addresses
equivalent to the host’s address. Note that this measurement
does not necessarily capture initiation of communication (e.g.,
TCP handshake). Each graphlet is drawn from a certain number
of observed packets sent from each host. The graphlet
we use is composed of six columns , which rep-
resent srcIP-proto-srcPort-dstPort-dstIP-srcPort.1 The order
of columns is different from the original definition [15].
We consider that srcIP-srcPort-dstPort-dstIP should be more
comprehensive because it clarifies the activity of computer
processes inside end-hosts (IP-Port pairs) and network-wide
interprocess communication among hosts (srcPort-dstPort
pairs). We place srcPort at the right side again to capture the
relation between dstIP and srcPort (inspired by [14]). Since we
draw one graphlet per source host, there is only one point in the
left column (srcIP).

B. Related Work and Open Issues

Here, the standpoints of the graphlet-based works and of this
paper are presented in the context of network traffic classifica-
tion conducted over the course of a decade.
Many statistics-based methods for traffic analyses have been

proposed to classify flows and host characteristics by means
of supervised and unsupervised methods. These studies have
made use of various supervised machine learning methods such
as nearest neighbors [8], [16], [20], Bayesian statistics-based
techniques [16], [20], [23], [25], decision tree [16], [20], [25],
Support Vector Machine (SVM) [16], [20], or even natural
language processing on Google search results [28]. The others
have leveraged unsupervised ones including K-means clus-
tering [1], [7], [18] or hierarchical clustering [18]. Both the
approaches have been applied to traffic features from various
aspects—packet sizes only [1], [8], combinations of packet

1We define “pseudo” source and destination ports for ICMP to be
in order to consistently draw graphlets.
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Fig. 2. Overview of our approach.

sizes, flow sizes, interarrival times, flow durations, etc. [7],
[20], [23], [25], and/or entropy regarding the number of re-
lated hosts/ports [18], [30]. Those statistics-based methods
are capable of overcoming packet encryption, encapsulation,
use of dynamic ports, or dataset without payload, which are
limitations on conventional approaches relying on payload
inspection [17], [24], [26] and port-based rules [4].
Several recent studies particularly focused on large-scale

host-to-host connections [10], [11], [13], [22], [27], [29],
the use of which promisingly enables to visualize how hosts
communicate with one another and enables to find groups of
hosts communicating with each other. These works leverage
existing graph-based analytical capabilities such as feature ex-
traction regarding complex networks [10], community mining
techniques [11], or block identification in communication
(adjacency) matrix [13], [29].
Different from those previous works, the approach de-

scribed here focuses on graphlets—detailed aspects of host
behaviors including the usage of protocols and source/des-
tination ports. The use of graphlets has been motivated by
their visual interpretability (as shown before) and has been
conducted in a few works. For example, Karagiannis et al.
perform supervised classification of flows based on graphlet
models predetermined by human experts [15]. Other works
characterize graphlet-based host behaviors in unsupervised
manners as follows. Karagiannis et al. discuss in-degrees and
out-degrees of nodes and average degrees of graphlets in [14]
and focus on manual finding of typical graphlets as well as on
time transition of those features; In [6], Dewaele et al. classify
hosts, making use of various features (some of them inspired
by graphlets) applied to an unsupervised clustering technique.
To overcome the various limitations of supervised/unsuper-

vised approaches that were discussed previously, and in contrast
to previous works, this paper aims at bridging the gap between
the two analytical approaches on graphlets by proposing a new
framework for graphlet manipulation.

C. Overview of Our Approach

The three contributions of this work are: 1) the automation
of finding typical graphlets via unsupervised clustering in an
interpretable manner; 2) a method to revisualize graphlets from
clustering results; and 3) an analysis on evolution of typical
graphlet shapes while increasing the number of packets per

graphlet, which is complementary to analyses on time-transi-
tion of graphlet features. Each contribution is an important step
of our method. Steps (1) and (2) are depicted in Fig. 2, and
step (3) is detailed in Section VI. Our method is organized as
follows.
As a preprocessing step, aggregated traffic traces are first

computed [Fig. 2(a)]. The traffic is measured in a backbone link
and composed of packets sent from hundreds of thousands of
hosts (Section III). We identify per-host traffic [Fig. 2(b)] ac-
cording to the source IP addresses specified in the packets and
draw graphlets from the first measured packets sent from each
host [Fig. 2(c)].
Step (1): An unsupervised clustering over graphlets is con-

ducted to find typical graphlets (Section IV). A numerical fea-
ture vector , which represents shape-based characteristics of
a graphlet, is extracted from the graphlet of packets sent from
host . The set of feature vectors , representing a set
of hosts, is used for hierarchical clustering to produce clusters
of hosts [Fig. 2(d)]. Cluster consists of hosts that
are similar in terms of their feature vector in the feature space.
For each cluster, we obtain the components of a representative
feature vector , which will be converted to graphlets in the next
step.
Step (2): Resulting clusters are visualized to recover in-

terpretability (Section V). Since unsupervised clustering
handles numerical features and thus loses visual information
of graphlets, we revisualize a representative graphlet associ-
ated with each cluster [Fig. 2(e)]. The reproduced graphlet,
called synoptic graphlet, is derived from the feature vector
of the centroid of a cluster. We develop an original method
to revisualize synoptic graphlets in a deterministic manner
since conventional probabilistic ways of graph rewiring are not
suitable for highly structured graphlets.
Step (3): Additionally, the evolutionary nature of synoptic

graphlets is studied (Section VI). The key observation is that
our knowledge of hosts may evolve as increases from 1
to larger numbers. To study the evolution of the associated
synoptic graphlets, we build an evolutionary tree of synoptic
graphlets that evolve from the single-line graphlet (the only
existing shape for ) to the diversity of synoptic graphlets.
This evolutionary tree is obtained by combining the clustering
results of increasing (detailed in Section VI). It provides
intuitive understanding of the divergences and convergences in
the growth of host characteristics as increases.
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III. DATASETS

This section first describes the two datasets used for the vali-
dation of the proposed method and, second, discusses how com-
bining three different and classical traffic classifiers produces
surrogates for real traffic ground-truth.

A. Traffic Traces

We analyze traffic traces stored in the MAWI repos-
itory [3], [21] and traces measured at Keio University,
Tokyo, Japan (used in [16] as Keio-I and Keio-II). MAWI
traffic [3], [21] is measured on a transpacific IPv4 link between
the US and Japan for 15 min everyday. The public repository
removes packet payloads, while the private repository retains
payloads, up to the first 96 B. Results are reported here based
on 12 MAWI traces collected once a month (on the 14th) in
2008. Keio traces used here are those presented in [16] and
measured for 30 min, for two different days in 2006, on a
bidirectional edge link in a campus of Keio University. Packet
payloads up to 96 B were also preserved. We first removed the
packets related to protocols other than TCP, UDP, and ICMP.
In the results reported below, we use the source hosts2

sending at least 1000 packets for MAWI trace (respectively,
100 packets for Keio trace). This choice balances the tradeoff
between: 1) having a lower reliability when hosts do not ex-
change enough packets, and 2) not keeping enough hosts when
the required number of packet is too high. It has been checked
that this arbitrary choice is not crucial. Results (e.g., the evolu-
tion of the number of clusters) similar to those obtained with

were drawn with , or
with for MAWI traces, where denotes the
number of packets sent by a host (observed in a trace). We will
quantitatively evaluate the differences of results regarding the
choice of in the future.
Each of the 12 MAWI traces contains about 1700 analyzed

hosts, yielding approximately a number of analyzed hosts
in total for the 12 traces, and the two Keio traces con-

tain about hosts in total ( is the number of ana-
lyzed hosts). Those analyzed hosts for MAWI data account for
1.1% (19K out of 1.7M) regarding the number of hosts, 86%
regarding the number of packets (207M out of 239M), and 93%
regarding the number of bytes (1.43T out of 1.52T).

B. Pseudo Ground-Truth Generators

Traffic analysis methods generally have to be evaluated with
dataset annotated from ground-truth. A crucial issue raised in
the recent literature, however, lies in designing a procedure to
obtain ground-truth on actual traffic traces. Most research in-
deed has regarded ground-truth as the labels put by a single
payload-based packet classifier. However, a lot of packets are
labeled as unknown by payload classifiers (as exhibited in this
paper). Also, payload-based methods do not necessarily pro-
duce correct outputs. To improve the ground-truth coverage and
accuracy, we carefully create three sets of pseudo ground-truth
from different methods detailed here.

2It should also be meaningful to analyze destination hosts. With this analysis,
for instance, wewill be able to capture hosts receiving lots of attack packets. As a
first step, we selected to analyze source hosts because of the easier interpretation
of results. Packets sent from a host can be well explained by the application of
the host, compared to packets received by a host.

1) Reverse BLINC: BLINC was originally proposed in [15]
and extended to Reverse BLINC in [16], which is now state-of-
the-art. BLINC profiles a pair of a source address and a port, and
once the pair is matched with one of the heuristic rules based on
the graphlet models, all pairs connected to that pair are classi-
fied. We used the default setting of Reverse BLINC as in [16].
BLINC’s classification framework isWWW, CHAT, DNS, FTP,
MAIL, P2P, SCAN, and UNKN (unknown). Since this classifier
reports classification results as flow records, we need to convert
them into a host-level database. For each source host, we col-
lect a set of flows generated from the host and select the category
(except for UNKN) that is the most frequent among the flows.
For example, if 10 flows from a host are classified into three
DNS, one WWW, and six UNKN, then the type of the host is
identified as DNS.
2) Port-Based Classifier: We use another classifier, which

was originally developed in [5] and also used in [2] and [9]. This
tool inspects a set of packets sent from a host, considering port
numbers, TCP flags, and the number of higher/lower source/
destination ports and destination addresses. The classification
categories are WWWS (Web server), WWWC (Web client),
SCAN, FLOOD (flooding attacker), DNS, MAIL, OTHERS,
and UNKN [9]. This tool reports host-level classification results
by itself.
3) Payload Classifier: We also use the payload-based clas-

sifier developed in [16].3 This classifier inspects the payload
string of each packet by comparing it to its signature database.
The classification categories we select are WWW, DNS, MAIL,
FTP, SSH, P2P, STREAM, CHAT, FAILED (when the packets
have no payload), OTHERS (minor flows such as games, nntp,
smb, and snmp), and UNKN. Since this tool also generates out-
puts in the form of flow tables, we merge them into host-level
reports by the same means used to aggregate outputs from Re-
verse BLINC.
The hosts annotations given by the three classifiers of dif-

ferent perspectives are used to evaluate the unsupervised anal-
ysis on graphlets that is presented in Section IV.

IV. UNSUPERVISED GRAPHLET ANALYSIS

We detail the first step of the method, which is an unsuper-
vised classifier for typical behaviors of hosts that does not rely
on predefined models. However, it will still allow us afterwards
to provide visual interpretation of the behaviors found.

A. Methodology for Unsupervised Graphlet Analysis

1) Extracting Shape-Based Features From Graphlets: We
first extract numerical feature values from graphlets because vi-
sual graphlets cannot be used directly as input to conventional
statistical methods (except for image processing). We choose
afterwards several types of features related to shapes. We note
the feature vector for the graphlet of host .
Notations on Graphlets: We denote the six attributes

(srcIP- -srcPort) as column . In column , the
total number of nodes is , and nodes are . We
define as the direction from to , which is used to

3In our preliminary experiment, we examined l7-filter [17] and found that
the tool generated rather unreliable outputs because of loose payload signatures
that are represented as regular expressions with a few bytes. Also, we found that
OpenDPI [24] produced mostly unknown reports because it uses strict rules.
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Fig. 3. Shape-based features for a graphlet (i.e., behavior of a host).

TABLE I
NOTATIONS FOR GRAPHLET DESCRIPTION. AN ATTRIBUTE HAS
TWO DIFFERENT DEGREE DISTRIBUTIONS BASED ON DIRECTION

(E.G., IS SEPARATED INTO AND ).
SEE SECTION II-A FOR DETAILS

define the in-degree and out-degree of nodes in column
( or ). The in-degree of node is defined
on direction as , namely, is the
number of nodes in that are connected to node in
. The out-degree is similarly defined on direction

as . As a consequence, node is characterized by
the pair of the in-degree and out-degree .
We define the array of in/out degrees for direction as

, where is the number of nodes
in column . gives the empirical distribution measured
from an observed graphlet. Table I summarizes these notations.
Feature Extraction: The proposed features are based on five

types of shape-related information, described formally as fol-
lows and visually in Fig. 3 (the relevance of the features is dis-
cussed later).
1) is the number of nodes in column . Note that
it is equal to the size of arrays and .
(six columns)

2) , where is the indi-
cator function, is the number of nodes that have degree 1
in direction (with ). (10 directions)

3) is the average degree of
direction . (10 directions)

4) is the maximum degree
of direction . (10 directions)

5) , where is,
for the node having maximum degree in (i.e.,
Feature 4), its degree in the backward direction
. If more than one node has the maximum degree for
Feature 4, the pair with the highest degree is selected
from among the candidates. A similar definition holds

TABLE II
NOTATIONS FOR GRAPHLET CLUSTERING

for the reverse direction . (eight directions, since
the edge columns have degree for only one direction)

As a result, from the graphlet for host , we obtain a feature
vector , ,

, , of dimension of
. We examine packet

traces or flow lists (input) to compute these features (output).
The index is omitted when not needed.
Examples: Fig. 3 shows an example of features. For direc-

tion , there are four nodes and three nodes of
one degree , and the average degree is 1.5

. The second bottom node has the highest degree of three
, and the degree of the node for the other direction is

one .
Practical Meanings: Even though these features are selected

from the viewpoint of graphlet revisualization (Section V), a
few of them can also be interpreted as traffic characteristics in
a practical sense. is the number of unique instances of the
flow attribute (e.g., the number of destination addresses).
and are respectively the average and maximum number
of unique flows of an instance of the attribute among all the
instances.
Relevance of Features: The selection of the five types of fea-

tures is empirically motivated by two objectives: 1) the expected
ability to obtain relevant clustering results because a few of the
features are already well known and well studied [6], and 2) the
ability to revisualize graphlets from the resulting clusters as ex-
plained in Section V. Also, the relative importance of the five
types of features is evaluated by a feature selection method in
Section IV-B.4.Macroscopic degree-related features such as be-
tweenness, the assortativity coefficient, or eigenvalues are not
used because graphlets are microscopic and highly structured.
We only use graph-based features to evaluate the interpretability
of graphlet clustering results, although there are many other
well-studied features such as TCP flag, packet size, and flow
size. Such features and ours are not exclusive but complemen-
tary. Using both types would enhance host profiling schemes.
2) Applying Graphlet Features to Unsupervised Clustering:

Here, we establish a method to find typical host behaviors in
terms of graphlet shapes. At a high-level view, a set of hosts

is grouped into clusters (clusters are
disjoint sets of the hosts). Table II lists the notations used for
the graphlet clustering.
Feature Normalization: Each feature value from feature

vector is mapped onto a log space as . For
the features related to the ID of the transport protocol, the pos-
sible ranges of the values are adjusted to the other features (i.e.,
addresses and ports) as follows: , where
is the number of analyzed packets to be drawn as a graphlet,

and the value 3 stems from the number of analyzed protocols
(TCP, UDP, and ICMP). Hence, this type of feature is distributed
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into as well as the other features for any .
This normalization onto the log space is motivated by our em-
pirical observation that graphlet shapes can be logarithmically
well characterized. For example, by inspecting graphlet shapes
with changing , we observed that difference in graphlet shapes
between and was intuitively similarly signif-
icant to and (rather than and

).
Unsupervised Clustering: Unsupervised clustering finds

groups of hosts that are similar in terms of feature values
by analyzing the hosts . The hierarchical clus-
tering [18] with Ward’s method is used, as it is known to
outperform other methods (e.g., single-linkage method). The
similarity between a pair of clusters is defined as a
merging cost: ,
with the intra cluster variance in
Cluster , the Euclidean distance between vectors
and , and the average feature vector of all hosts in .
The distance-based threshold is used to separate clusters in
this feature space. The clustering produces a set of clus-
ters , depending only on (each host is included
in a single cluster only). The selection of is discussed in
Section IV-B.
Motivation for Distance-Based Threshold Instead of Number-

Based One: The distance-based threshold is preferable com-
pared to cluster-number-based thresholds (such as the one for
the K-means technique). This is because a consistent value of
can be used for any , which mitigates the burden of parameter
tuning in analyses with several as performed in Section VI.
Number-based thresholds would have to be appropriately tuned
through trial-and-error independently for each , as the number
of typical clusters for each cannot be known. The consistent
use of a single threshold over different is empirically en-
abled by the normalization of the feature spaces as
because distance between two clusters of typical behaviors will
remain mostly the same for different ’s. Instead, conventional
normalization into would induce clusters with different
behaviors at larger to be located closer, requiring to be
decreased.
Computational Load:We used hcluster methods in the amap

R-library. Approximately 1.5 GB memory was required for
about instances of dimensional
vectors. It took around 2.4 min with a 2.8-GHz Intel Core 2
Duo CPU with 4 GB memory. By performing the clustering
with changing , we empirically confirmed that time and space
complexities were both .

B. Results: Finding Typical Patterns of Host Behaviors

1) Threshold Selection: The distance-based threshold
eventually determines the number of extracted clusters
according to a conventional tradeoff: A too high misses a
number of typical host behaviors, while a too low produces
redundant clusters (i.e., different clusters having similar com-
positions). By changing the value of , we inspected the list
of synoptic graphlets (representative graphlets for resulting
clusters—details are defined in Section V) to identify whether
there are redundant clusters (having same shape of synoptic
graphlets) and whether there are new types of clusters that
cannot be found by large . We experimentally found that
thresholds that balance this tradeoff well are with the

Fig. 4. Clustering threshold characterized by the dependency on the number
of analyzed hosts and the number of resulting clusters . (a) MAWI (

). (b) Keio ( ).

MAWI traces (about hosts) for , pro-
ducing approximately clusters, and with the
Keio traces (about hosts) for , resulting
in clusters. This tradeoff has been manually inspected
because it is quite difficult to computationally identify redun-
dancy of clusters in terms of the shapes of graphlets, which are
one of our major focus and are enumerated in Section V.
Fig. 4 addresses the characteristics of by showing its re-

lationship to the number of analyzed hosts and the number
of clusters obtained from: (a) MAWI (for ), and
(b) Keio (for ). Each set of analyzed hosts was se-
lected from a random sample of the total number of original
hosts by changing the sampling rate. This figure suggests refer-
ential values of for each dataset to obtain a certain number of
clusters that balances the tradeoff well for any .
We note that this value of can be consistently used for

other , and this is the reason why we do not directly use the
number-based threshold. Since is based on the distance in the
feature space, we can compare the clustering outputs from var-
ious with a single consistent criteria. For example, smaller
might lead to fewer numbers of clustering with regard to the

feature space. We confirmed that the value of is consistently
appropriate for other as shown in Section VI.
2) Typical Patterns of Host Behaviors: Table III shows the

clustering result, with hosts at of MAWI
data, obtained from a comparison between the graphlet clus-
tering and the three classifiers, i.e., Reverse BLINC (R-BLINC),
port-based classifier (Port), and payload-based classifier (Pay-
load). This table displays the total number of hosts in each cat-
egory, and each cell shows the number of hosts in the inter-
section between two classes of two classifiers. The first row of
the column headings is auto-generated labels. The second row
shows graphlets revisualized from clusters (Section V), and the
bottom row is discussed in Section VI.
The sparseness of Table III indicates that each cluster mostly

corresponds to a type of host behavior. For instance, (con-
taining 1427 hosts) is characterized by one typical category be-
cause most of the hosts are labeled as a category of each classi-
fier: 1361 hosts as WEB by R-BLINC, 1351 hosts as WWWC
by Port, and 1316 hosts as WEB by Payload. In addition, the
overall similarity among the results from the three classifiers
cross-validates their effectiveness.
Clusters can show the typical host behaviors hidden in a

single category. WEB of R-BLINC, for example, is sepa-
rated into a few clusters, reflecting the different behaviors of
Web hosts such as server , client

, and P2P user as suggested by



1290 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 4, AUGUST 2013

TABLE III
RESULTING CLUSTERS (MAWI WITH ) COMPARED TO THREE CLASSIFIERS: REVERSE BLINC (R-BLINC), PORT-BASED CLASSIFIER (PORT),

AND PAYLOAD-BASED CLASSIFIER (PAYLOAD). CLUSTERS ARE OBTAINED FROM THE ANALYZED HOSTS
WITH THE SELECTED THRESHOLD

WWWS, WWWC, and P2P of Port, respectively. Moreover,
the WWWC (Web client) category of Port is clustered into a
few groups, and a plausible reason for this is that there are a
few typical behaviors of Web clients based on the usage of
Web such as large-file transfer, Web browsing, and ajax-based
activity. Also, the MAIL category of Port shows the behaviors
of only server , only client or both
server and client . This observation can also be validated
by the other categories in the same cluster (e.g., P2P of Port in

).
In particular, the ability to cluster unknown data is an ad-

vantage of the unsupervised approaches. Our clustering method
provides key information to profile hosts that R-BLINC clas-
sifies as UNKN4 by separating these hosts into different cat-
egories. For example, separates 577 UNKNs of R-BLINC
from the total 5268 UNKNs of the classifier, and we can specu-
late that most of the 577 UNKNs are Web servers as most hosts
in the cluster are classified as Web servers (e.g., mainly con-
sists of 348 WEB hosts labeled by R-BLINC other than the
577 UNKN hosts). The same is true for other UNKNs of the
three classifiers. Thus, the results of the classifiers and of our
approach complement each other.
The effectiveness of a connection pattern-based approach can

also be complementarily improved by port- and payload-based
approaches. One notable example is , which contains the
most of UNKN hosts from R-BLINC. The port and payload

4We provide an example of UNKN hosts labeled by R-BLINC by examining
Cluster , which consists of 1283 hosts. This cluster consists of mainly WEB
hosts as suggested by the three classifiers and the shape of synoptic graphlet.
As mentioned above, this synoptic graphlet can be mapped with BLINC’s orig-
inal WEB graphlet, but this cluster contains 242 UNKN hosts classified by
R-BLINC. A plausible reason of the UNKN hosts is as follows. As one of the
classification rules, R-BLINC considers WEB hosts to follow “

,” where is one of the 28 thresholds and its value with our default
setting is . The average and standard deviation of “ ”
are for WEB hosts of R-BLINC inside (991 hosts), and are

for UNKN hosts of R-BLINC inside (242 hosts), which does
not follow the above-mentioned R-BLINC’s classification rule for WEB.

classifiers both indicate that this cluster is mainly related toWeb
server and client hosts. Actually, for the 2348 UNKN hosts in
, our additional inspection found that 1150 hosts are classified

asWeb server or client by both the port- and payload-based clas-
sifiers; This suggests that such cross-validation would reduce
the UNKN classification. Another example is that 1404 hosts
out of the 1612 WEB hosts for R-BLINC in are identified as
Web server or client as well by both the port- and payload-based
classifiers, which indicates those hosts can be considered as
Web-related ones with high “plausibility.”
3) Intercluster Distance: We examined the distribution

of clusters in the feature space by using the intercluster dis-
tance metric: defined as , where
is the centroid vector for . We define

. The average and standard devia-
tion of is , with minimum

and maximum
in the log space.

This means that the clusters are not uniformly distributed. Our
observation was that graphlets with low number of flows (e.g.,

) have low between each other, i.e., they
are densely distributed yet clustered due to the high number
of hosts, whereas high derives from graphlets with high
number of flows (e.g., , ) having
similar shape but different typical number of flows.
4) Dominant Features: Here, we extend the discussion

by evaluating which out of the features sig-
nificantly contributed to the obtained clusters
(Table III). For this evaluation, we use Fast Correlation-Based
Filter (FCBF) [16], [23], [31], a feature ranking and selection
method. We note that FCBF is used only for evaluating the
relative contribution of the features to the clustering results and
is not used for other parts of this paper.
FCBF selects the most effective and smallest set of features

with respect to symmetric uncertainty (SU) , which mea-
sures a form of correlation between two random variables:
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TABLE IV
GRAPHLET FEATURES EVALUATED BY FCBF

, where is the information-theo-
retical entropy and is the conditional entropy. is the
correlation between feature and clusters (SU against clusters),
and is that between features and (SU against features).
A higher means that feature contributes to detecting one
or more clusters, whereas a higher indicates that joint use
of features and is redundant. The method first removes irrel-
evant features (having low ) and then excludes redundant
features (having higher than ).
Table IV lists the selected features showing their SU against

clusters for MAWI and Keio data: clusters for MAWI
with , and clusters for Keio with .
The features selected by FCBF are mainly (the number
of one-degree nodes), and this result suggests that this type of
feature is more relevant and less redundant than the other fea-
tures. Our interpretation is that represents well a part of the
graphlet (i.e., the area between and ) in term of its shape
[e.g., a square (parallel line(s) between columns) or a triangle (a
knot on a column)] and of its number of lines (i.e., visual com-
plexity) (e.g., one line, a few lines, or many lines). These are
basic characteristics of the behavior of hosts, and the features

represent such characteristics better than the other features
used here. Fig. 1 shows examples for . Square shapes such
as the area between and in Fig. 1(b) occur when both the
values of and are high. On the other hand, triangle
shapes such as the area between and in the figure appear
when one of and is quite low (e.g., zero or one).
In particular, between srcPort and dstPort contributes sig-
nificantly to the clustering (first and second ranks in Table IV).
The relation between the ports represents the detailed behavior
of interprocess communication, which is an important aspect of
networking.
Even though other features also have discriminative power,

such features are not part of the best set of features. For example,
we observe that for srcPort has , and of src-
Port to dstPort has for MAWI data, indicating that
these features are also useful. These features, however, were re-
moved because of their high correlation with corresponding
(e.g., a higher will be provided by a higher ). It means that
they have similar but weaker effect on the clustering compared
to . In other words, is a good approximation of the shapes
of graphlets. Even so, the other features are also necessary for
inferring synoptic graphlets (see Section V), and this is why we
keep all the features.

V. SYNOPTIC GRAPHLET

According to the unsupervised procedure described in
Section IV, graphlets associated with hosts are clustered with

Fig. 5. Synoptic graphlet. Graphlets obtained from hosts are clustered. In turn,
each cluster is associated with a representative a posteriori synoptic graphlet.
The second row of Table III displays the synoptic graphlets revisualized from
the actual clusters of hosts.

Fig. 6. Procedure of revisualizing synoptic graphlets. A synoptic graphlet of a
cluster is reproduced from the graphlet features of the cluster centroid. Graphlet
features are defined in Section IV-A.1 and Fig. 3.

respect to their feature vectors. Now, as an inverse problem
aiming at associating each cluster with a representative graphlet,
as sketched in Fig. 5, we propose a method to construct a syn-
optic graphlet from the feature vector representing a cluster.

A. Synoptic Graphlet: Construction

An original mapping from a feature vector into a set of bipar-
tite graphs that constitute a graphlet is detailed here and illus-
trated in Fig. 6. This mapping is applied to the feature vector of
the cluster centroid. We will address the motivation to use syn-
optic graphlets instead of centroid-nearest graphlets at the end
of this section.
Median Centroid: Recalling that the feature vector of host

was defined as , let us define
as the centroid features of Cluster , where

the th largest value of among is selected as the
median feature .5 6

5As an example, for , if a cluster contains 100 hosts, the 50th largest value
in is chosen as the median ( and do not necessarily derive from
the same host).
6We note that statistics other than the median could be chosen as a represen-

tative. We also tried to use average as representative, but average is not robust to
outlier features, and more critically taking the averages leads to decimal values,
which are difficult to deal with for graph rewiring. The -dimensional me-
dian features are converted from a log scale into a linear scale by inverting the
normalization function defined in Section IV-A.2.
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1) Considering a Graphlet as a Set of Bipartite Graphs: To
infer a graphlet from the centroid features of a cluster, we con-
struct a graphlet as a set of bipartite graphs. and are a
disjoint set of a bipartite graph, and are another, and so
on. In other words, we break down the graphlet reproduction
problem into: 1) reproducing the degree distributions of each
bipartite graph; 2) rewiring each bipartite graph based on the de-
gree distributions; and 3) merging neighboring bipartite graphs.
2) Reproducing Degree Distributions: From a feature vector,

we build the degree distribution of direction (
or ), denoted as where is the

total number of nodes as defined in Section IV-A.1 (“ ” is
omitted from and for brevity). We first consider the
one-degree nodes as follows: . If
all the nodes have degree of one (i.e., ), this procedure
ends; otherwise, we rebuild the remaining part of the degree
distribution. We define the number of remaining nodes and
the remaining degrees as and
. The degrees are estimated as follows: ,

, where ,
which satisfies . This process to distribute
the remaining degrees to the remaining nodes is based on the
usual appearances of graphlets (e.g., some “knot” nodes, only
one, etc.).
3) Rewiring Bipartite Graphs: A bipartite graph is gen-

erated from and computed above. Nodes of
higher degrees of are connected with those of lower de-
grees of , which reflects an empirical traffic characteristic
(one-to-many connection rather than two-to-many). An ex-
ample of this characteristic is server–client behavior, where:
1) a source port is connected with several destination hosts,
and also 2) a destination host is associated with a set of several
destination ports, which are not related to other hosts. By
defining as (right) and as (left), we connect

with , and then connect with
, where is the largest label of nodes

that have degree remaining after the previous connections. We
iterate this connection procedure until is dealt with and
consequently obtain a bipartite graph.
4) Merging Bipartite Graphs Into a Synoptic Graphlet:

A synoptic graphlet is then drawn by combining each pair
of neighboring bipartite graphs. We additionally define the
direction: as (forward) and as (backward).
The two directions have different degree distributions with the
same number of nodes: and , and a pair is
merged into a node , where , , and are determined
as follows. We first compute the degree correlation between

and , which we define as ,
with and of the centroid features. If the correlation
is positive , we combine the nodes in the same order
of degree value: .
Conversely, for , the combination order is reversed:

.
Synoptic Versus Centroid Graphlets: Instead of synoptic

graphlets, centroid graphlets (i.e., hosts whose features are
nearest to the centroid ones) may have been selected as cluster
representative. For clusters with very large number of flows,
both choices likely yield close representatives. However,
centroids suffer from a number of disadvantages: 1) Centroid

graphlets may show a very large variability (hence lacking
robustness) for clusters with small number of flows, while syn-
optic graphlets are less dependent on the actual number of flow
per host because it is regenerated from all the representative
features of a cluster; 2) centroid graphlets do not necessarily
result into the typical representative of cluster because not
necessarily all the features of a single host correspond to the
centroid features. The centroid may occasionally correspond
to a specific behavior, only when most of its features are
close to the median, to the contrary of synoptic graphlets that
somehow make the visualization/interpretation step indepen-
dent from the classification phase (in a semi-supervised spirit).7

Therefore synoptic graphlets should be more effective tools to
represent what actually happens in the feature space and thus to
profile and interpret host behaviors. More detailed comparisons
between centroid and synoptic graphlets are beyond the scope
of this paper and will be discussed elsewhere.

B. Synoptic Graphlet: Interpretation

The second row of the column headings in Table III shows
the synoptic graphlets, revisualized from the clusters
presented in Section IV-B (larger versions are displayed in
Section VI).
Effectiveness of Synoptic Graphlets:One of the advantages of

synoptic graphlets is the ability to construct an intuitive under-
standing of clustering results. The “complexity” of the shapes
of synoptic graphlets meaningfully represents the intensity of
flows. For example, a graphlet of many lines is derived from
the use of many flows, indicating that the corresponding host
uses an application for many peers and/or many ports (e.g., DNS
and MAIL are the categories of the many-lines graphlets such
as ). In addition, the number of nodes for each column
is also meaningful. For instance, if (srcPort) has only a few
nodes, then the corresponding host can be speculated to be a
server (e.g., is mainly labeled as WWWS by Port).
BLINC Models Validity: Most of the synoptic graphlets in

Table III correspond to most of the BLINC graphlets8 (listed
in [15]), and thus our result validates the intuitions behind the
BLINC series. An exception, though, is pointed out by .

7We briefly compared the synoptic graphlet and centroid-nearest graphlet for
each cluster. Approximately 80% of clusters produced intuitively similar shapes
of the two kinds of graphlets. This is plausibly due to the well-tuned threshold
and enough number of hosts inside a cluster. Such correspondence between the
two kinds implicitly validates the overall procedure of rewiring graphlets. We
also found the differences in shapes of the two kinds. For example, in Cluster
, there were differences in the #nodes in the dstIP column between the corre-

sponding synoptic graphlet and centroid-derived graphlet. Indeed, the collapse
in the shape of the synoptic graphlet (Table III) indicates that this graphlet does
not represent per-host behavior well, but rather represents an aggregated view.
We manually inspected the composition of and found that this cluster con-
tained two types of typical host behaviors. This graphlet suggests that it would
be meaningful to further separate into different clusters.
8For example, the synoptic graphlet of can be mapped withWEB graphlet

[shown in Fig. 5(d) of the original paper], because the two graphlets commonly
represent one srcPort, and several dstPort, and a few dstIP nodes. The relevance
of this mapping is supported by the fact that R-BLINC classifies most of the
hosts in as related to WEB. For another example, the synoptic graphlet of
can be related to DNS graphlet [shown in Fig. 5(g) of the original], because

the two graphlets commonly represent many srcPort, and one dstPort, and a few
dstIP nodes. The original graphlet represents both client-side and server-side
behavior in a single figure, yet the graphlet of can be mapped with client-
side one. The relevance of this mapping is supported by the fact that R-BLINC
classifies most of the hosts in as related to DNS.



HIMURA et al.: SYNOPTIC GRAPHLET 1293

Fig. 7. Creation of evolutionary tree.

Most hosts are identified as UNKN by R-BLINC, whereas they
are mainly identified as FLOOD by Port (probably because of
a large amount of SYN packets and few targeted hosts). On
the other hand, some clusters having similar shape of synoptic
graphlets consist of similar breakdown such as and . As
implied by the different number of lines in the shapes of syn-
optic graphlets for the two clusters (Table III), this result indi-
cates two typical numbers of flows of graphlets, which might
not easily be found by applying untuned heuristic rules.
One-Flow Graphlets: represents synoptic graphlets com-

posed of one flow (4594 in total—about 25% among the an-
alyzed hosts), and the three classifiers unfortunately identify
many of them as UNKN. This kind of isolated communication
has been observed in prior studies [10], [12], [13] as well. Al-
though one-flow graphlets are classified into various application
categories as the three classifiers point out, the one-line shape
itself reveals the important information that packets
from a single host constitute only one flow. In other words, a
one-flow graphlet possibly implies large file transfer because
we do not observe any control flows or the other flows. This
plausible interpretation is supported by the finding that many of
these hosts identified by the three classifiers are Web or P2P
users, which are occasionally used for host-to-host large-file
transfer in some cases.
In summary, synoptic graphlets are effective for an intuitive

and visual understanding of the clustering output, and the
comparison result indicates the relevance of the overall idea
of BLINC, while alleviating the difficulty of manually setting
appropriate rules and parameters.

VI. EVOLUTIONARY NATURE OF HOST-LEVEL TRAFFIC

Let us further discuss the effectiveness of the new method
by introducing evolutionary tree of synoptic graphlets, which
provides a way to understand the evolution of informa-
tion about host behaviors when the number of analyzed
packets increases. To achieve this, we analyze the same set of

hosts by changing the value of (Fig. 7). This
tree can also answer the question “How many packets do we
need to find all typical patterns?” and “How accurately hosts
can be profiled with a given ?”

A. Evolutionary Tree: Creation

Snapshot: The next key question in the assessment of syn-
optic graphlets is raised by the choice of the number of
packets that need to be involved in graphlet construction to find

Fig. 8. Characteristics of the threshold for evolutionary tree . (a) MAWI. (b)
Keio.

all typical patterns and thus permit accurate host profiling. This
is addressed via the concept of synoptic graphlet evolutionary
tree that characterizes host behavior profiling evolution when
increases. For example, a single packet (thus a single flow)

produces a single-line graphlet, whereas two packets may result
either in a single line if they belong to the same flow or in two
lines sharing nodes and edges if they share common attributes.
Any graphlet may hence evolve from an identical single-line
shape toward a complex pattern as increases. An evolutionary
tree is thus obtained from combining different snapshots , i.e.,
graphlets obtained from different values of .9 For MAWI
data, for snapshots

; for Keio data, for
.

Tree Creation: Let denote the set of clusters ob-
tained at snapshot (i.e., from packets). For each , is
obtained with a value of the sole threshold that remains con-
stant and does not depend on . Thus, serves as distance basis
in the feature space, and hence does not determine a priori the
number of clusters, which permits to compare clustering out-
puts obtained with different . The evolutionary tree is created
from a single criteria, relying on a threshold : If the number of
hosts in is larger than ( being the total
number of analyzed hosts), the two clusters and are
connected by an edge, which materializes that the typical be-
havior at snapshot tends to evolve into at .
Finally, an evolutionary tree provides an intuitive overview of
the behavioral growth of hosts.
Threshold: Setting the threshold , which determines

whether neighboring clusters are connected or not, results
from the following tradeoff: Too high may yield “isolated”
clusters, not connected to any other clusters on any neighboring
snapshot; too low may yield many “impossible” evolutions
in graphlet shapes. For example, for some synoptic graphlets,
might be reduced from to because of the changes in the
set of hosts within a cluster, despite the fact that this never oc-
curs in the evolution of the graphlet of a single host. Therefore,
the connection between Cluster at snapshot and Cluster at

is declared impossible if either of parameters , , and
is reduced. Fig. 8 illustrates the tradeoff, plotting the number of
isolated clusters and that of impossible evolutions as a function
of . Empirically, the threshold is set to (i.e., about
150 hosts) for MAWI data, and to (i.e., about

9It should also be interesting to analyze this by increasing the number of flows
per host (instead of increasing the number of packets ). However, we have to
elaborate on the appropriate way to deal with hosts with low number of flows
(e.g., 25% of hosts have only one flow).
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Fig. 9. Evolutionary tree of synoptic graphlets as a function of (or ).

70 hosts) for Keio data, which maintain no isolated cluster and
a low number of impossible evolutions.

B. Evolutionary Tree: Interpretation

1) Intuition From Evolutionary Tree—Visual Analysis:
Global View: Fig. 9 depicts the resulting evolutionary tree

for MAWI data ( , , cf. Section IV-B.1,
, cf. Section IV-A). Synoptic graphlets at snapshot

are shown in the th column, and related synoptic graphlets
(from successive snapshots) are linked with arrows. The syn-
optic graphlets at correspond to the evaluations pre-
sented in Sections IV-B and V.
Fig. 9 thus provides an intuitive and comprehensive overview

of the evolution of typical host behaviors, from (origin
of graphlets) to large , permitting interpretation of graphlet
changes with . Interestingly, clusters do not only separate, but
also merge as increases. This suggests that there exist dif-
ferent evolution footprints, even when hosts are clustered into
a same group at a given snapshot. Evolutionary trees thus en-
hance the profiling by providing richer information.

Early Stages: For , by nature, there are only
one-flow graphlets. For , although there are theoretically

possible graphlets (combination of four attributes:
proto, srcPort, dstPort, and dstIP), only seven are actually ob-
served. Although some graphlets are actually different from the
seven synoptic graphlets and have different transitions, these
are not typical, and hence do not appear in the figure. Such
minor graphlets could be found by finer-grained clustering,
with lower .
Late Stages: The final forms of graphlets become apparent

in the late stages. For example, one-flow graphlet A is destined
to mostly remain one-flow, after , as indicated by the
abrupt increase in predictability discussed in Section VI-B.2.
Other examples are provided by synoptic graphlets B and C,
prominent at and 50, respectively. They are mainly
related to scanning activities, which thus indicates that
is large enough to permit separation of scanners from other

activities. As a whole, the total number of clusters at
remains quasi-unchanged compared to that at . Thus,

can be considered as the reference number of packets
required for accurately discovering typical host behaviors. Also,
this result implies that provides some longitudinal
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Fig. 10. Predictability of evolution as a function of . (a) MAWI. (b) Keio.

stationarity of aggregated view of host behaviors. The bottom
row in Table III lists each stage at which each Cluster stops
its evolution along the tree (i.e., becomes predictable).
Keio Data Case: Similar results were obtained for Keio data,

but for the fact that one-flow graphlets continue to evolve at
. We interpret that the stagnation of one-flow graphlets for

MAWI could stem from the partial view of the traffic, measured
at the backbone link, whereas Keio traffic is measured at an edge
router.
2) Predictability in Evolution—Quantitative Analysis: To

complement the understanding of synoptic graphlet evolution,
the evolution predictability of a given host in the tree is quan-
tified. Let us define ,
which measures the probability that hosts in Cluster at
snapshot evolves into Cluster at . We
define the predictability of Cluster as

, where
is the final snapshot and the corresponding number

of clusters. is hence a normalized entropy that
characterizes the dispersion of transition probabilities. Thus,
if grows only to , then , whereas if

can evolve into any future shapes with equal probability,
then . Note that this predictability is computed
considering all possible evolutions (i.e., ).
Fig. 10 displays the predictabilities of all clusters

as a function of (or ) for MAWI and Keio. Each dot stands
for a synoptic graphlet (i.e., a cluster) for a given snapshot.
The dashed line represents the transition in the average pre-
dictability and shows that the predictability is approximately
linear with (Pearson’s correlation coefficient is 0.95).
The predictability at is almost 0, which suggests that
the corresponding origin of a graphlet can evolve into any final
graphlet. Conversely, this predictability becomes higher with
higher . In addition, predictabilities for some abruptly
become higher than for others, which indicates the end of the
evolution for that synoptic graphlet, as shown by Points A and
B at and C at (that correspond to synoptic
graphlets A–C in Fig. 9). The high predictability value for
these synoptic graphlets at low snapshots confirms the obser-
vation made from the evolutionary tree that the future of these
graphlets is early set and hence that can be easily distinguished
with fewer packets than other types of graphlets.

VII. DISCUSSION

Revisiting BLINC: The results presented in Sections IV-B
and V validate the concepts at work in BLINC, as most of the

auto-generated synoptic graphlets can be related to empirically
defined BLINC graphlet models [15]. However, such heuristic
model-based approaches face the potential difficulties in: 1) de-
signing appropriate rules as indicated by the observed unknown
clusters, and in 2) determining the relevant values of thresh-
olds for accurate classification as partially implied by a prior
work [16], which conducted a number of trials to determine ap-
propriate parameters. Instead, unsupervised approaches can po-
tentially uncover new types of applications with the tuning of
only a very limited number of threshold levels. In addition, an
advantage of our approach should be to avoid the assumption
that the traffic of one host should bemostly explained by a single
application.10

Traffic Characteristic Evolution When Increasing the
Number of Analyzed Packets: Section VI showed that the
method requires around 100 packets to classify hosts. This is
larger than the findings of a few previous works. For instance,
the work reported in [1] showed that major TCP flows can be
identified on bidirectional links from their size and direction
by examining only the first four or five packets (after the hand-
shake) in a connection. Other works [8], [20], [25] also claimed
such an ability. This paper, however, deals with more general
assumptions about traffic: unidirectional links, legitimate as
well as anomalous and unknown traffic, a few protocols besides
TCP, uncertainty of observing the first packets of flows. In
this context, the need to collect a larger amount of information
to predict traffic characteristics does not come as a surprise.
Moreover, our work is to profile hosts, not only identifying the
application in a TCP connection.
Limitations:
1) The degree-based features used here do not include rela-
tions among nonneighboring columns such as and .

2) In addition, real graphlets are not as clean as rewired ones
because they include packets unrelated to the main behav-
iors of the hosts. Features could be weighted to remove
such noise, e.g., the width of edges and the radius of nodes
could be set based on the number of packets.

3) In some cases, host behaviors may result from two dom-
inant kinds of applications, e.g., a host serving both mail
and DNS, or a NAT gateway with a Web client and a P2P
user. Such a host cannot easily be profiled.

4) In general, synoptic graphlets only provide shape informa-
tion. Although such information provides meaningful in-
sight into host behaviors as shown throughout this paper, it
is still difficult to identify the exact application names used
by hosts. If we want to identify them, it would be helpful
to put port numbers in the graphlet figure or to cross-com-
pare with classifiers based on port numbers, payloads, IP
addresses [28], packet sizes [1], [8], and so on.

Application to Supervised Approaches: A potential applica-
tion is to create a reliable dataset of known flows, which an

10To show the nonnegligible amount of application mixture of a host, we
quantify the degree of this for a host as , where
is an application (except for UNKN), is the total number of ’s

flows identified as a certain application (except for UNKN) by the payload clas-
sifier, is the number of ’s flows identified as application by the
classifier. In other words, is the fraction of most dominant application
in terms of #flows. For the result for hosts in the 12 MAWI traces,
we found that bottom 10% of hosts have , bottom 20% have

, and bottom 25% have (i.e., remaining 75%
of hosts are mostly characterized by a single application).



1296 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO. 4, AUGUST 2013

approach like that of Iliofotou et al. [11] could then use. This
is because our experiment found graphlets corresponding to a
single application (say in Table III). Such graphlets could be
known signatures for any supervised methods. This approach is
better than just using a signature generator (say a payload-based
classifier), as any classifier will have some misclassification.
The clustering scheme presented here can group highly inter-
related flows that can be characterized as learning data of en-
hanced reliability.
Application to Unsupervised Approaches: Another use case

of our method is to help researchers (or network administrators)
to interpret the results of unsupervised clustering over graphlets.
In general, interpretation of resulting clusters should require to
examine a lot of numerical features , as a prior work [6]
does, which becomes significantly difficult as the dimension in-
creases. On the other hand, the use of synoptic graphlet supports
such interpretation by converting those features in a single in-
tuitive figure. For example, if a synoptic graphlet for Cluster
contains only a single node in the column for srcPort and the
node has several edges, one can easily interpret that is mostly
composed of server hosts (similarly, that for dstPort implies that
is related to client hosts). With such assistance in interpreta-

tion, operators will efficiently notice and understand the emer-
gence of new types of application usages (e.g., malicious hosts,
P2P software users, or rapid increase in Web clients) appearing
as new clusters in the monitored link.

VIII. CONCLUDING REMARKS

The main issue of this paper was the tradeoff in choosing
between supervised and unsupervised approaches to end-host
profiling. The former is comprehensive but is blind to unde-
fined classes, while the latter can uncover unknown pattens of
behavior at the sacrifice of interpretability. We aimed to bridge
the gap between the two in this paper. The proposed method
was designed to perform unsupervised clustering for finding
undefined classes and to revisualize the resulting clusters as
synoptic graphlets for providing interpretability. We compared
the method against a graphlet-based state-of-the-art classi-
fier (BLINC) as well as against a classical port-based inspector
and a payload-based one by applying these methods to two
sets of actual traffic traces measured at different locations. The
proposed method spontaneously generated synoptic graphlets
that are typical in their shape, which validates the graphlet
models heuristically predefined in earlier works. Also, for
methodological study of the improvements brought to host
profiling, this work demonstrated how to extend beyond a
simple classification to the production of an evolutionary tree
by increasing the number of observed packets per host. The
entire procedure requires only a few threshold to be tuned while
the state-of-the-art method needs many. The new achievements
in this contribution are as follows: 1) an unsupervised clus-
tering applied to graphlet shape-based characteristics; which
is further significantly extended to 2) a visualization-oriented
auto-enumeration of typical host behaviors generated from
actual data, successfully resulting in validating the relevance of
past works, and 3) an analysis on evolutionary characteristics
of the growth of host behaviors both in visual and quantitative
manners, which is useful in understanding the evolutionary
nature of host behaviors.
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