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Abstract—Traffic causality graphs (TCGs) are proposed for
visualizing and analyzing the temporal and spatial causality of
flows to profile network applications without inspecting packet
payload. A key idea of TCGs is to focus on the causality of indi-
vidual flows composed of different application protocols rather
than a set of host flows. This idea enables us to analyze temporal
interactions between flows, such as the temporal manner of flow
generation by identical application programs and interactions
between incoming and outgoing flows. We demonstrate the
effectiveness of TCGs for profiling network applications in case
studies with ground truth datasets. The results show that the
simple features of TCGs are discriminative for profiling network
applications and that TCGs are also advantageous for profiling
application programs, such as user agents of Web browsers and
proxies that cannot be classified by existing approaches; this
enables us to identify a specific application program that uses
the same protocol as other programs. In addition to the TCG
features, the visualization of TCGs reveals the causality of each
flow, which consequently helps network operators to identify the
root causes of other flows, such as malicious ones.

I. INTRODUCTION

Internet usage has become diversified and various network
applications are run on the Internet. In this environment,
traffic classification is one of the key technologies for IP
network management tasks, such as analysis of security in-
cidents, network topology design, and traffic engineering.
The simplest traffic classification method is based on the
source and destination port numbers of the transport layer
(e.g., TCP and UDP) [1]. However, a problem for the port-
based method is that port numbers are not statically bound
to each application. For example, network applications can
use non-standard ports, especially when there are firewall
port restrictions. Moreover, some network applications such
as peer-to-peer applications may use a random port. Cases
such as these make it difficult to classify traffic according to
port numbers. Many advanced techniques that do not rely only
on port numbers have been proposed for profiling network
application traffic. Signature-based traffic classifiers [2], [3],
[4], [5], [6], [7] identify applications from network traffic by
inspecting packet payloads (i.e., application data). However,
packet inspection creates some privacy concerns, and it is
difficult to conduct when the data is encrypted. To solve these
privacy and encryption problems, statistical approaches [8],
[9], [10] have been proposed to classify applications from

network traffic. These approaches use statistical properties,
such as the probability distribution of packet inter-arrival time
and of packet size, instead of packet payload inspection.
These properties are useful for detecting anomalies in network
flows, and consequently, they have also been used in anomaly
detection methods [11]. An intrinsic approach [12] not relying
on signatures or statistical properties checks IP addresses
in flows and Web contents found in search engine results
corresponding to an IP address to profile end-hosts. However,
as the authors mentioned, it cannot profile end-hosts using
P2P applications, and applying it to application profiling
is difficult because end-hosts, especially end-user hosts, use
multiple applications. Other approaches [13], [14], [15], [16],
[17] use information on spatial interactions between hosts or
flows for traffic classification. However, these approaches do
not focus on the causality of flows and cannot easily profile
application programs such as Web browsers/proxies without
payload inspection, though they might succeed in profiling
certain application classes, such as the Web browsing and P2P
file-sharing classes. Moreover, since these approaches neglect
the causality, the root causes of flows cannot be identified.

In summary, the main problem of existing approaches is
that they cannot profile application programs well, although
application program profiling is important in network opera-
tion [18]. The existing approaches do not focus on the temporal
order of flows, despite applications generating flows in a
certain temporal manner that varies by application type; for
example, Web browsers first resolve a domain name by DNS
and then retrieve a content by HTTP. In addition to temporal
order of flows, the approaches also ignore interactions between
incoming and outgoing flows. For example, a Web proxy partly
behaves like a Web client; it resolves a domain name and
retrieves content from the original Web server, after receiving
an HTTP request. Therefore, the temporal and spatial causality
of flows is highly significant for profiling network applications.
One practical use of this application program profiling is to
identify a specific application program that uses the same
protocol as other programs but has security problems.

In this work, we focus on the temporal and spatial causality
of individual flows for profiling network applications, without
looking at packet payload. Our final goal is to automatically
profile application classes and to automatically profile appli-



cation programs. We propose traffic causality graphs (TCGs)
that represent temporal and spatial causality of flows for
visualizing and analyzing traffic patterns to profile network
applications. We discuss a TCG composition method and a
network application traffic profiling approach using TCGs.
The main contribution of this paper is to propose a network
application traffic profiling approach that enables us to analyze
temporal and spatial flow causality. Case study results show
the advantage of the proposed approach, which uses the simple
features of TCGs, for profiling application programs as well
as application classes. In addition to use of the features, we
show that the TCG visualization helps network operators to
identify the root causes of other flows, e.g., malicious ones.

II. RELATED WORKS

Several works focus on the interactions between hosts or
flows to classify traffic. Iliofotou et al. [15], [16], [19] and Jin
et al. [17] have proposed graph-based approaches to profile
application’s activities. They model the social behavior of
hosts by representing hosts and their interactions as vertices
and edges in a graph, respectively. In these approaches,
temporal activities as well as momentary ones can be analyzed
by looking at series of graph snapshots. However, one problem
common to these approaches is that they do not focus on
interactions between different protocols, such as interactions
between DNS and HTTP in Web browsing, because they repre-
sent flows by edges, not vertices. Thus, they have difficulty in
profiling the activities of applications using multiple protocols.
Karagiannis et al. [13], [14] analyzed spatial five-tuple (flow)
interactions and they showed that the characteristics of flow
interactions could be used to identify the application classes
of end-hosts such as Web, P2P application, and attack classes.
However, the temporal interactions between flows were ig-
nored, and more detailed profiling with their approach, such
as application program profiling, is not possible.

Flow dependency has also been researched. Popa et al. [20]
proposed an approach to identify network application depen-
dencies by using process IDs on operating systems as well
as packet traces. However, this approach requires a process
monitor to be installed at each end-host, so deployment in
some networks, such as a campus guest network, is difficult
because each end-host is owned and administered by each
user. Kandula et al. focused on flow dependencies to con-
struct communication rules for an edge network [21]. Their
focus was similar to ours in terms of flow interactions, and
they extracted significant communication patterns. However,
temporal information, such as the order of consecutive flows,
was missed because their approach partitions flows into time
windows to search related flows. Namely, temporal flow
causality is more useful for profiling network applications if
characteristics are extracted from the causality. Unlike their
approach, our proposed approach categorizes temporal flow
interactions into four relationship types. This categorization
has a significant role when we use the interactions as features
in TCGs, as shown in §IV-B.

Vladislav et al. [18] investigated signatures of several pop-
ular applications, such as Web browsers (Google Chrome,
Firefox etc.) and E-mail clients. The motive of their research
is similar to ours in terms of focusing on application program
profiling. They achieved to extract flow signatures of these
applications, and identify them without deep packet inspection
by using extracted flow signatures. However, they do not build
up any general methods to extract the discriminative flow
signatures. We provide more general method and features to
profile applications.

III. TRAFFIC CAUSALITY GRAPH COMPOSITION

The profiling procedure consists of three steps. The first step
is to aggregate packets into flows based on a conventional five-
tuple: 〈proto, srcIP, srcPort, dstIP, dstPort〉. This
method does not require the packet payload; instead it uses
the transport layer header. Note that each direction of a flow
is processed as a different flow, e.g., one bidirectional TCP
connection is represented as two flows. In this step, we assign
the timestamp of the first packet of each flow to the flow. The
second step is to compose a TCG from the flows. All flows
are represented as vertices in the graph, and then related flows
are connected by directed edges. The direction of an edge
represents temporal transition. The TCG composition consists
of two phases: 1) connecting related flows and 2) reducing
edges by heuristics. Finally, we analyze the TCG and profile
network applications.

A. Flow causality and visualization of TCGs

In TCGs, vertices and edges represent flows and flow
causality, respectively. We first define four types of flow
causality relationships to compose TCGs (Fig. 1): 1) commu-
nication relationship (CR), 2) propagation relationship (PR), 3)
dynamic-port host relationship (DHR), and 4) static-port host
relationship (SHR). The first two, CR and PR, are relationships
from a flow going to a host (i.e., an IP address) to a flow
coming from the host, representing that a flow causes a
corresponding flow. CR is a one-to-one relationship from a
request to its response (i.e., reverse direction of the request
five-tuple). PR is a many-to-many relationship in which one
flow propagates information into another flow, such as proxy
and relay. The other two, DHR and SHR, are many-to-many
relationships between flows coming from an identical host.
DHR is the relationship between flows with the same srcIP
but a different srcPort; e.g., Web browsers create multiple
connections to an identical server with different source port
numbers. SHR is the relationship between flows with the
same srcIP and srcPort, e.g., some port scanners use an
identical srcPort for a sequence of the port scan procedure,
and a server uses a static source port for responses. Note that
there are hundreds of other possible types of relationship of
flow causality such as relationship between flows with the
same dstIP and different srcIPs, but we focus on these four
relationship types as characteristics representing application
behavior.
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Fig. 1. Examples of four types of flow causality relationships and their TCG visualizations. Each vertex and edge in a TCG represents a flow and relationship
between two flows, respectively. Number in parentheses denotes proto; i.e., 1 for ICMP, 6 for TCP, and 17 for UDP. Note we treated all flows as outbound
for the TCG visualization.

A TCG can be visualized as a directed graph. The shape
of vertices represents proto and flow direction; we use
triangles for outbound ICMP, inverted triangles for inbound
ICMP, double circles for outbound TCP, single circles for
inbound TCP, double bordered octagons for outbound UDP,
and octagons for inbound UDP1. For the visualization of
edges, we use half arrowheads in indigo, double-headed ones
in brown, filled ones in green, and open ones in green for CR,
PR, DHR, and SHR, respectively.

Examples of these four types of flow causality relationships
with their TCGs are shown in Fig. 1; the details of the
algorithm will be introduced in the following subsections.
Note that we treat all flows as outbound for the visual-
ization, ignoring the real flow direction. Figure 1(a) shows
an example of CR with simple server-client communication
through HTTP. The client 192.0.2.1 sends a request to
the server 192.0.2.2, and then the server replies. These
flows are related to each other because the response is ini-
tiated by the request. Figure 1(b) shows an example of PR
with a DNS request and response through a DNS cache
server. The client 192.0.2.1 sends a request to the cache
server 192.0.2.2, and then the cache server relays the
request to the authoritative server 192.0.2.3. The flow
from the cache server to the authoritative server is caused
by the flow from the client (i.e., the original request), so
these flows are related. Figure 1(c) shows an example of
DHR with single Web page access using DNS and HTTP.
The client 192.0.2.1 first resolves the name from the
DNS server 192.0.2.2 and then requests the resolved
Web server 192.0.2.3. The flow (Web request) from the
client to the Web server depends on the flow (DNS request)
from the client to the DNS server because DNS lookup is
required before access to the Web server. Figure 1(d) shows
an example of SHR with host scan activities from a host with
one static source port number. The host 192.0.2.1 scans
the host 192.0.2.2, and then scans the host 192.0.2.3.
This host scanning fixes an identical port through a sequence
of scan activities.

1It may be difficult to distinguish octagons from circles depending on the
resolution. In this case, the shape can be ignored because transport layer
protocols are less significant than transport layer ports, which are indicated
by color for the visualization.

Algorithm 1 Get the type of relationship between flows f1

and f2

procedure getRelationship(f1, f2, τ ):
1: if timestamp(f2) − timestamp(f1) > τ then
2: return Nil
3: end if
4: if proto(f1) = proto(f2)

and srcIP(f1) = dstIP(f2) and srcPort(f1) = dstPort(f2)
and dstIP(f1) = srcIP(f2) and dstPort(f1) = srcPort(f2) then

5: return COMMUNICATION_RELATIONSHIP
6: else if dstIP(f1) = srcIP(f2) then
7: return PROPAGATION_RELATIONSHIP
8: else if srcIP(f1) = srcIP(f2) and srcPort(f1) 6= srcPort(f2) then
9: return DYNAMIC_PORT_HOST_RELATIONSHIP

10: else if srcIP(f1) = srcIP(f2) and srcPort(f1) = srcPort(f2) then
11: return STATIC_PORT_HOST_RELATIONSHIP
12: else
13: return Nil
14: end if
end procedure

B. Phase 1: Connecting related flows

We compose a TCG from a set of flows with the times-
tamp of the flow head and five-tuple parameters by con-
necting related flows according to simple rules. These rules
almost exactly correspond to the definitions of flow rela-
tionships in §III-A. We use six parameters, i.e., the five
elements of the five-tuple and the timestamp, for the TCG
composition. The functions proto(f), srcIP(f), srcPort(f),
dstIP(f), and dstPort(f) return proto, srcIP, srcPort,
dstIP, and dstPort of the flow f , respectively. The
function timestamp(f) returns the start time of the flow f ,
i.e., the timestamp of the first packet of the flow.

The algorithm to determine the type of relationship between
any two flows is in Algorithm 1. Note that non-consecutive
flows are also processed. Since temporally distant flows can be
considered as not related, this algorithm first checks a thresh-
old τ (lines 1–3). The threshold is defined as a global constant
value in the algorithm. The threshold works independently of
the edge reduction rules explained in §III-C, and it is used
to limit the edges generated in order to reduce computational
complexity. Then it checks the CR (lines 4–5), PR (lines 6–
7), DHR (lines 8–9), and SHR (lines 10–11), in that order. If
the input two flows have no relationship, the algorithm returns
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Fig. 2. TCG by Phase 1 without edge reduction (Packet trace: Web access
to page http://www.google.com/ by Microsoft Internet Explorer; τ = 1[s])

Nil (lines 12–13). If the algorithm returns a non-Nil value,
an edge from f1 to f2 labeled with the returned relationship
is added to the TCG.

Here, we define the terminology for TCG edges: CR-request
and CR-response are the source and destination vertices of
a CR edge, respectively. In the same way, PR-source, PR-
destination, DHR-source, DHR-destination, SHR-source and
SHR-destination are the source and destination vertices of a
PR edge, a DHR edge, an SHR edge, respectively.

C. Phase 2: Reducing edges by heuristics

Figure 2 demonstrates a TCG composed in Phase 1 from a
packet trace. Clearly this figure indicates problems with the
simple algorithm in Phase 1. Flow causality is difficult to
understand from the visualization of this TCG, and conse-
quently, only significant edges should be retained. Algorithm 1
produces TCGs with two problems: 1) too many PR, DHR, and
SHR edges, most of which do not represent direct causality,
and 2) irrelative edges due to the simplicity of the algorithm.
The former problem occurs because PR, DHR, and SHR are
many-to-many relationships and an identical host generates
several flows within the threshold. We call these edges that do
not represent direct causality tenuous edges. The latter problem
is caused simply because the Phase 1 algorithm is based on
simple rules thus generates any possible edges even if some
edges indicate indirect causality. For example, CR-responses
can also be PR-destinations according to the algorithm, but
they should not be because CR-responses are obviously caused
by corresponding CR-requests but not by PR-sources. We
call these edges that should be removed irrelative edges. We
remove irrelative edges by looking at neighboring edges. Note
that edges that do not represent indirect causality are related
(i.e., not irrelative). In addition to these two problems, we
may want to remove insignificant or uninteresting edges. For
example, when we focus on flow causality within a client host,
DHR/SHR edges from any CR-response to any CR-response
are not of interest because these responses are server activities
and can be removed. Therefore, we introduce three heuristic
edge reduction rules (ER-Rules) to solve these two problems
and to remove insignificant or uninteresting edges.
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Fig. 3. ER-Rule 2: Removing irrelative edges

• ER-Rule 1. Removing tenuous edges: To reduce PR, DHR
and SHR edges, we simply remove all PR, DHR, and
SHR edges except for the temporally closest one for
each relationship, i.e., the maximum out-degree for each
relationship is one. This rule is based on a heuristic that
the temporally closest flows are generated by the same
applications and represent direct causality.

• ER-Rule 2. Removing irrelative edges: We remove irrel-
ative edges by looking at neighboring edges. DHR/SHR
edges from any CR-response to any CR-request should
be removed because there must be PR edges as shown
in Fig. 3(a) and the CR-responses are not the initiators
of the CR-requests, i.e., PR-sources are the initiators
of the CR-requests, which are the same as the PR-
destinations. DHR/SHR edges from any CR-request to
any CR-response and PR edges to any CR-response
should also be removed because CR-responses are initi-
ated only by CR-requests, as shown in Fig. 3(b). We keep
DHR/SHR edges from a CR-response to another CR-
response as a server activity, though they can optionally
be removed by ER-Rule 3(b).

• ER-Rule 3. (a) Removing insignificant edges (PR edges
from CR-responses): We can remove PR edges from any
CR-response if we consider that the PR-destination is not
initiated by the PR-source but by the original CR-request,
as shown in Fig. 4(a). (b) Removing uninteresting edges
(server activities): When we focus on client activities,
DHR/SHR edges from any CR-response to any CR-
response are not of interest because they represent server
activities. Therefore, we can optionally remove them as
shown in Fig. 4(b). (c) Removing uninteresting edges
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Fig. 4. ER-Rule 3: Removing insignificant or uninteresting edges

DNS request

HTTP request

Fig. 5. TCG with Phase 2 edge reduction (Packet trace: same used in
Fig. 2; τ = 1[s]; ER-Rules: 1, 2, and 3(a)); color indicates difference of
application protocols based on port numbers (red for DNS (UDP/53) and
blue for HTTP (HTTP/80)).

(client activities): Likewise, when we focus on server
activities, DHR/SHR edges from CR-requests to CR-
requests are not of interest and can optionally be removed
as shown in Fig. 4(c). Note that the ER-Rule 3(c) is rarely
applied because client activities are more significant
information on an application’s activities.

Figure 5 shows a TCG from the same packet trace used
in Fig. 2 after ER-Rules 1, 2, and 3(a) were applied. This
figure clearly depicts that the Web browser looks up the
domain name just before HTTP access. Thus, applying ER-
Rules improves the expressivity of flow causality as well as the
visualization. For a detailed analysis, the removed edges may
indicate discriminative characteristics of network applications,
but we consider that they are less important than the retained
edges.

IV. EVALUATION

We demonstrate the effectiveness of TCGs for application
profiling by using real packet traces. We first visualize TCGs
of ground truth packet traces to show the significance of
the proposed method because the visualization enables us
to intuitively analyze the temporal and spatial causality of
flows. We then show the profiling results obtained using
simple TCG features. To create ground truth packet traces, we
captured packet traces of four Web browsers (Microsoft Inter-
net Explorer, Mozilla Firefox, Google Chrome, and Opera),
three P2P file sharing applications (BitTorrent, LimeWire,
and Perfect Dark), and one P2P video streaming application
(BBbroadcast) at clean-installed operating systems (Windows
XP SP3). To create other ground truth packet traces from
applications running on the Internet, we also captured actual
traffic at a laboratory-level network gateway. We used two

DNS prefetch
HTTP request

DNS request

Fig. 7. Part of TCG of actual traffic from/to a host (τ = 1[s]; ER-Rules: 1,
2, and 3(a, b)). Confirmed as Firefox trace by manual inspection.

Web proxy request DNS request

HTTP request

Fig. 8. Connected component of TCG of Web proxy packet trace (τ = 1[s];
ER-Rules: 1, 2, and 3(a, b)).

traces, SSH brute force attacks and Web proxy, that were
manually classified with a server log. We summarize the
ground truth packet traces of the application programs and
the method for obtaining these traces in TABLE I.

A. Case studies

We first focus on the characteristics of four major Web
browsers. We browsed the same pages with each browser
in the same order. Figure 6 shows parts of the TCGs of
these browsed packet traces. We used +∞ for the threshold
τ and applied ER-Rules 1, 2, and 3(a) to compose these
TCGs. From these visualized TCGs, we can see one interesting
and discriminative activity that Mozilla Firefox and Google
Chrome send DNS queries to resolve domain names before
they are actually required, while Internet Explorer and Opera
do not. This activity is the so-called DNS prefetch, and it is
applicable to application program profiling. Figure 7 shows a
part of the TCG of actual traffic captured at the laboratory-
level gateway. This trace indicated similar Web access activity
to a prefetch-enabled Web browser. We confirmed that it was
Firefox by manual inspection. Thus, the temporal causality of
flows is advantageous for profiling application programs, i.e.,
user agents of Web browsers.

A connected component of the TCG of the Web proxy
packet trace is shown in Fig. 8. Unlike the TCGs of Web
browsers, there is a PR edge before the DNS request, meaning



TABLE I
GROUND TRUTH PACKET TRACES

Application program Version Application class Trace

Microsoft Internet Explorer 8.9.6991.18702 (Update Versions: 0) Web browser Browsed several web pages
Mozilla Firefox 3.6.10 Web browser Browsed several web pages
Google Chrome 6.0.472.62 Web browser Browsed several web pages
Opera 10.63 (Build 3516) Web browser Browsed several web pages

BitTorrent 7.0 (Build 21591) P2P file sharing Launched and downloaded a file
LimeWire 5.5.14 P2P file sharing Launched and downloaded a file
Perfect Dark 1.0.6 P2P file sharing Launched and sent queries
BBbroadcast 6.0.11.9232 P2P video stream Joined and viewed a sample video streaming

SSH brute force attacks N/A Actual traffic Captured at gateway / Manual inspection
Web proxy N/A Actual traffic Captured at gateway / Manual inspection

Google Chrome

(cont'd)

(cont'd)

(cont'd)

DNS prefetch

Microsoft Internet Explorer

Mozilla Firefox

(NETBIOS from OS)

Opera

HTTP request

DNS request

HTTP request

HTTP request

DNS prefetch

HTTP request

DNS request

Fig. 6. Parts of TCGs of well-known Web browsers (τ = +∞; ER-Rules: 1, 2, and 3(a)).

(a) SSH request

(b) Reverse DNS lookup corresponding to SSH request

Fig. 9. Part of TCG of SSH brute force attacks (τ = 1[s]; ER-Rules: 1, 2,
and 3(a)).

that the sequences of DNS requests and HTTP requests are
invoked by Web proxy requests. DNS requests are also invoked
in some applications to validate IP addresses or to log host
names. For example, HTTP servers look up the host name
(i.e., reverse DNS lookup) to store it in a log file. We can also
observe this activity in an SSH login procedure because SSH
servers validate the host name of SSH clients attempting to
login. Figure 9 shows a part of the TCG of SSH brute force
attacks. We confirmed that the server resolves the reverse name
of the client after receiving SSH login requests. A difference

between the Web proxy and SSH brute force attacks is that
another flow (i.e., HTTP) follows after DNS lookup in the
Web proxy, while SSH brute force attacks generate only DNS
flows. An insight from these TCGs is that TCGs can reveal
the root causes of flows (e.g., Web proxy request and SSH
login request). Identifying the root causes is an important
task for network operation. because individual flows do not
have discriminative information on whether these flows are
proxied/relayed or original ones. For example, flows following
a proxy request or an SSH login request are similar to those of
a (prefetch-disabled) Web browser or a domain name lookup
tool (e.g., nslookup), i.e., normal application programs.

B. Application to traffic classification

To achieve automated profiling of network applications
using TCGs, we introduce two simple features: 1) the ratio
of the number of PR edges to that of CR edges in a TCG
(PR-CR), and 2) the ratio of the number of DHR edges from
DNS request to DNS request to that of all DHR edges in a
TCG (DNS-DHR). The feature PR-CR represents the activity



TABLE II
RESULTS: FEATURES OF TCGS (τ = 1[S]; ER-RULES: 1, 2, AND 3(A))

Application program #Edges PR-CR DNS-DHR

Microsoft Internet Explorer 270 0.029 0.077
Mozilla Firefox 739 0.008 0.600
Google Chrome 1161 0.025 0.580
Opera 516 0.020 0.034

BitTorrent 3444 0.595 0.025
LimeWire 4803 0.320 0.058
Perfect Dark 905 0.345 0.000
BBbroadcast 373 0.246 0.006

SSH brute force attacks (60 s) 619 0.259 0.586
Web proxy(5 s) 3668 0.614 0.100

of reactions caused by other flows, such as proxy, relay,
and IP address validation with DNS. The feature DNS-DHR
represents the activity of consecutive DNS requests, such as
DNS prefetch in Web browsers.

We composed TCGs with τ = 1[s] and ER-Rules 1, 2, and
3(a) for each packet trace, and then we calculated the features
of the composed TCGs. We show the calculated features in
TABLE II as preliminary profiling results. They show that
the DNS-DHR of prefetch-enabled Web browsers (underlined
values) is higher than that of prefetch-disabled ones. This is
because a prefetch sends DNS queries in clusters, and DNS-
DHR performs well for characterizing this activity. The results
also show that P2P applications, SSH brute force attacks, and
the Web proxy have higher PR-CR than client applications
(i.e., Web browsers). Since P2P applications relay queries or
contents and communicate with other hosts more frequently
than client applications, PR-CR becomes higher. Similarly,
SSH brute force attacks and the Web proxy have higher PR-
CR than client applications (underlined values). A difference
between the SSH brute force attacks and the Web proxy is
that the attacks also have higher DNS-DHR, while the Web
proxy does not (underlined value). As Fig. 9 confirms, the
SSH brute force attacks invoked three DNS queries for one
SSH login request, so DNS-DHR became higher. However,
since this Web proxy performed like a prefetch-disabled Web
browser after proxy requests as shown in Fig. 8, DNS-DHR
became smaller.

In summary, the results highlighted that flow causality is
effective for profiling network applications. Even the simple
features investigated here have potential for profiling appli-
cations because they differ by applications. However, more
experiments and analysis with datasets are required.

V. DISCUSSION

TCG composition: The ER-Rules may inaccurately remove
some PR edges. For example, PR edges of P2P applications
may not represent the actual relation. Since P2P applications
receive queries from other hosts while also sending queries to
other hosts, any two flows are eventually connected depending
on the threshold τ . Moreover, since current multitask operating
systems may simultaneously run multiple applications, flows

from different applications may be inaccurately connected. We
believe that the proposed TCG composition method provides
extensive information for profiling applications, but the edge
reduction algorithm could be improved. To do this, we will
consider extending the flow dependency extraction method
proposed in Ref. [21] to the TCG composition method in order
to divide a TCG into several components. The threshold τ
in the edge connection algorithm should also be discussed.
This threshold is less important than the edge reduction rules
because tenuous edges are removed in the edge reduction
procedure independently of the threshold. However, it should
be evaluated in the future.
Profiling features: We used two simple features of the TCG
profiling results for profiling applications. However, we realize
that there are other possible features, such as graph properties,
and that each flow also has statistical features, such as flow
size and probability distribution of packet inter-arrival time.
We can use these additional features to profile applications
more accurately. Conversely, we can discard packets except
for TCP-SYN packets for TCP if we do not use the other
features of TCGs related to flow statistics. Here, we explain
an example of the use of additional features. According to the
case studies, both the TCG of SSH brute force attacks and
that of the Web proxy have PR edges. However, the activity
of the SSH brute force attacks is not similar to that of the Web
proxy because the contents of the invoked flows in the attacks
are not related to the original SSH requests. In contrast, in
the Web proxy, the contents of the invoked flows are strongly
related to the original requests. We could distinguish these
differences by adding statistical features as profiling features
because original flows and proxy flows should have similar
characteristics.
Restriction: We have focused on edge networks such as
company and campus networks, and have assumed that packet
traces are captured at the gateway and that there are no in-
network proxy servers, such as NAT gateway, DNS cache
servers, and Web proxy servers, inside the networks. These
in-network proxy servers cause problems with TCGs. For
example, if there is a DNS cache server inside the network,
DNS flows from hosts in the network will never go through
the traffic monitor because these hosts send queries to the
DNS cache server. Addressing this problem remains as future
work. The applicability of our approach to large networks
is also undetermined. In our evaluation, we used two packet
traces captured at a single host and at a gateway of a small
network (∼/24 IPv4 address space). Figures 7, 8, and 9 were
obtained from a trace of the small network, but we have
not yet evaluated the proposed approach with traces of large
networks. We will evaluate the applicability of our approach
to large networks and its scalability in the future. Since the
TCG composition algorithm runs in the order of n2, where n
is the number of input flows, the scalability must be evaluated.
DNS for traffic classification: Wu et al. [22] focused on
DNS activities to identify the use of P2P applications. Their
approach analyzes the characteristics of the control plane
protocol (i.e., DNS) rather than data plane protocols (e.g.,



HTTP and P2P). Unlike other application protocols, DNS
usually uses a statically bound port number (i.e., UDP/53)
and no other ports can be available in DNS trees on the
Internet because authoritative servers listen only on UDP/53
or TCP/53 for DNS queries. We also consider that DNS is
one of the best discriminative protocols to use in identifying
applications, although the Wu et al. approach focused only on
identifying P2P applications. This is why we introduced DNS
(i.e., UDP/53) as a feature for TCGs.
Applications of TCGs and impact: TCGs illustrate tempo-
ral and spatial communication patterns with flow causality.
Our approach is quite different from existing graph-based
approaches [15], [16], [17], [19]. These existing approaches
profile application traffic at the host level (i.e., IP address
level) but not at the application program level (i.e., set of
flows level). The authors of Ref. [19] indicate that hosts with
multiple application protocols do not have to be considered
because only a small number of hosts with multiple application
protocols are observed at backbone links. Our main target is
edge networks, such as company and campus networks. Thus,
we introduce flow causality to take into account application
programs that use multiple application protocols. Here, we
show an example of applications of TCGs to network man-
agement and the impact. In Fig. 8, DNS and HTTP requests
are initiated by proxy requests, but it is difficult for network
operators to judge whether these DNS and HTTP requests
are original requests (i.e., without a proxy) because individual
flows do not represent the proxy function. In this case, when
network operators detect an anomaly in a HTTP response to
the proxy client, network operators possibly identify the cause
at the proxy server although the proxy server simply relays the
original response. However, TCGs can extract the root cause
by profiling application programs with flow causality, i.e.,
network operators can identify the root cause and the position
of the detected anomaly if they know the traffic is a part of
Web proxy traffic and proxy servers propagate flows to other
hosts. Thus, it is important to profile application programs by
flow causality, although existing traffic classifiers do not.

VI. CONCLUSION

We proposed TCGs for analyzing temporal and spatial
flow causality to profile network applications without payload
inspection. The TCG composition method with four types of
flow causality relationships was discussed, as was the concept
of network application profiling. We presented case studies to
show the advantages of flow causality for profiling application
behavior. The results of these case studies demonstrated the
effectiveness of TCGs for profiling network application classes
and programs. The main contribution of this paper is that
simple features of TCGs are effective for profiling application
programs as well as application classes. Existing approaches
cannot easily profile application programs. Thus, TCGs are
a step towards effective network application profiling. One
practical use of application program profiling is to identify
a specific application program that uses the same protocol
as other programs but has security problems. In addition to

the simple TCG features, the visualization of TCGs reveals
the causality of each flow, which consequently helps network
operators to identify the root causes of other flows.

We will look into other features of TCGs with advanced
analysis methods such as pattern matching and graph mining.
Although this paper has focused on profiling application
classes and programs, we will also evaluate content-related
characteristics such as poor and rich content Web sites with
TCG features as well as features of other applications.
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