2011
臨時増刊

特集 システム監視制御におけるIP技術の動向

解説 クラウド・コンピューティングの目指す方向

一般論文 超高圧変圧器用絶縁紙の劣化評価
土居発電所 水車・発電機の改修工事
受配電機器の絶縁余寿命推定技術

環境技術ノート CO2の深部埋水層貯留技術

随想 服に体を合せる!? と

海外文献紹介

株式会社 電気評論社
特集 システム監視制御における IP 技術の動向
総論：IP 技術を活用した設備の監視制御の動向 電力中央研究所 芹澤 善積 ———— 7
発電用監視制御システムにおける IP 技術の適用と課題
東京 渡邉 経夫・石川 佳郎・大滝 裕樹 ———— 14
系統監視制御における IP 技術の動向 日立製作所 三好 晴樹 ———— 19
配電自動化システムにおける IP 技術の動向 富士電機 渡辺 豊司 ———— 24
電力システム用 IP ネットワークの信頼度・セキュリティの確保
四国電力 辻 千香 ———— 29
鉄道、電力会社における電力設備監視制御ネットワークの IP 活用
日本電気 福島 慶 ——— 34
上下水道設備の監視制御における IP 技術の動向
日新電機 大久保 章・高見 岳史・竹原 輝巳 ———— 37
IP 通信網を利用した設備監視制御の動向 東京大学 江崎 浩 ———— 43

解説
クラウド・コンピューティングの目指す方向 CSK 黒川 利明 ———— 51

随想コーナー 交流・直流
服に体を合せる!? 海外電力局調査 中山 元 ———— 50

一般論文
超高圧変圧器用絶縁紙の劣化評価 関西電力 羽柴 靖人・電力中央研究所 水谷 嘉伸・かんたんエンジニアリング 牟田神美・他 ——— 56
土居発電所 水車・発電機の改修工事 中国電力 長尾 宜昭 ———— 60
受配電機器の絶縁余寿命推定技術 三菱電機 三久 伸介・岡澤 周 ———— 64

評論ギャラリー 「マルボルク城」 木津谷 文吾 ———— 6
環境技術ノート
CO₂の深部塩水層貯留技術
地球環境産業技術研究機構
瀬澤 孝一・薛 自求

海外文献紹介（No. 173）

ニュース
・中国にスイッチギャコンポーネントの生産を行う合弁会社を設立——— 13
・新型電子式メータの通信性能フィールド試験実施——— 42
・日射量予測システム「ソラリオン」の開発——— 47

電気評論委員芳名
編集後記
広告目次

7月10日発売

2011年7月号予告
定価 970円（消費税込）
送料 92円

特集 工業、農業、医療などにおける放射線の利用技術
放射線の健康への影響については関心が高まっているところである。放射線について抜群に経済的な注意が要するものの、実際には多方面にわたって、身近な所でも有効に利用されているのが現実である。特集では工業、農業から医療まで幅広い利用の状況を紹介し、将来のさらなる有効利用を展望する。

特集内容
総論：わが国における放射線利用の現状と今後の展開
放射線による突然変異と育種
食品の放射線照射利用
放射線を利用した非破壊検査技術
最近のイオンビーム装置とその利用
最近の電子線照射装置とその利用
放射線の医療への利用
ヘリカルCT装置とその利用

特集以外の主要記事
読物
琵琶湖疏水建設の目的とその役割についての一考察
伊藤矩三水系論説
琵琶湖疏水記念館
白木 正俊

解説
次世代化教育としてのエネルギー教育——2011
東京理科大学
川村 康文

連載講座
パワーエレクトロニクス技術とその応用
第4回 電力変換回路の基礎
佐藤之孝
その他、論文、環境技術ノートなど掲載
IP通信網を利用した設備監視制御の動向

東京大学 江崎浩*1

1. まえがき

21世紀の社会・産業基盤は、情報通信システムがその創造性と持続性の実現には必しもであり、情報通信システムと実空間で展開されるオブジェクトとの連携、すなわち、実空間に存在する物（Things）の状態の把握（センシング:Sensing）と制御（アクチュエーション:Actuation）の設計と実装が、社会全体の効率を決定することになる。これは、広義のグリーンIT/ICTあるいはスマートグリッドの実現につながるものである。人間に例えれば、ICT機器やICT機器が仕事をする場所であるコンピュータールームやIDC（Internet Data Center）は「脳」にあたる。ネットワークは「神経系」である。問答能率的な脳」と「俊敏に動作する神経」が、人間の効率的な機能的な活動を実現するのを明らかである。さらに、これは、イノベーションの持続性を実現するに寄与するインフラでなければならない。

2.21世紀の都市設計

スマートシティの一実現には、地球全体を覆うセンサネットワークの構築と、センサノードやアクチュエータノードをはじめとしたすべてのデジタル機器の協調動作が実現されなければならない。さらに、これらの動作は、中央集中的管理制御することは不可能であり、ローカルおよびグローバルの両方において自律分散的な協調動作環境が構築・管理・運用され、持続的（Sustainable）な進化（Innovation Revolution）を実現するに資する基盤を前提としなければならない。このようなシステムは、後述するエコシステムである。

エコシステムとは、『食物連鎖など生命の相関関係と、生物とそれを取り巻く無機的環境の間の相関関係を統合的に捉えた生物社会のまとまりを示す概念』であり、『エコシステムは周辺の状況などにより変化するが、その系の中で互いに働きかけて安定化する性質がある』（WikiPediaより）とされている。ビジネスにおいては、関係する企業・組織がビジネス活動において協調と競争を行うことで、利益やイノベーションと創造を持続し、その構造を変化させていくことを意味している。エコシステムは、以下のシステム的要件を満たしなければならないと考える。

（1）自立性（Independent）
（2）自律性（Autonomous）
（3）交流性（Interaction, Interoperability）
（4）適応性（Adaptability, Agility）

21世紀の都市を「人」にたとえれば、インターネットは「神経系」に相当し、クラウドコンピューティング基盤に代表されるサーバシステムは「脳」に相当する。人は、いくら、すばらしい筋肉が各コア（＝コンポーネント）を持っているとしても、コンポーネントを手に制御するための神経と頭脳がなければ、非効率な動作しかできず、時に、機能しない事態も発生してしまう。また、インターネット（＝神経系+頭脳系）は、同じエネルギーでより多くのアウトラインを生成することができる。一方で、システムに、コンポーネントもモジュールの取り換え性（Alternativeness）を持つことを可能とするシステム設計を行うことによって、革新的な新しいコンポーネントの導入を可能にしてなければならない（図1）。

20世紀の最後の10年で社会基盤としての普及を遂げたインターネットは、TCP/IP技術をその核とし、グローバル規模でのオープン技術を通用したデジタル基盤としており、近年では、すべての産業領域の持続的発展とイノベーションのインフラとして認識されるに至っている。インターネットの父として知られるRobert Kahn博士は、「インターネットは論理的なシステム構造と言うのであって、TCP/IP技術
図1 ICTと都市設計の概念

術を適用したスイッチやルータから構成される物理的ネットワークの全体を意味するものではない」と、筆者との私的会話の中で発言している。すなわち、インターネットアーキテクチャが社会にもたらした構造改革を、本稿における「ICT通信網を用いた」と解釈する必要がある。

すなわち、IP技術を用いた省エネ・環境対策に資するシステム基盤は、その本来の目的だけではなくインターネットがそうであったように、結果的にはデジタル・ユビキタス・センサ・ネットワークを構築し、社会・産業に新しい創造性と産業の創成をもたらさなければならない。IP技術を適用した設備ネットワークおよび設備自身は、新しいサービスや産業、さらに新しいライフスタイルを、展開可能としなければならず、そのためには、透明性と相互接続性を持ったインフラでなければならない。

具体的には、以下に示すような段階を経て、21世紀の社会を支えるインフラへと進化を遂げなければならない。

Step.1 センサや制御機器が、IP技術を核にして相互接続され、協調動作し、エネルギー流の制御が自在に可能となるインフラの構築

Step.2 ユビキタスに存在するセンサや制御機器、さらに、これらの機器が生成するデジタル情報が、ほんの少しの低コストで流通可能なインフラの登場。

Step.3 このユビキタス・デジタル・インフラを用いた新しいサービスが、グローバル規模で創造・展開。

3. 東大グリーンICTプロジェクト

3.1 プロジェクトの概要

グリーン東大工学部プロジェクト（2010年4月より「東大グリーンICTプロジェクト」に名称変更。英名名はGreen University of Tokyo Project。略称GUTP）では、ファシリティの設計、構築、運用、管理ならびに制御に関係するステークホルダーからなる、エコシステム的な共同研究開発コンソーシアムを形成した。

東京大学本郷キャンパスの中心部に位置する工学部新2号館を実フィールドとした実証モデルの設計と構築・運用・評価を通じて、スマートビルディング、さらにスマートキャンパスを具現化するものである。すなわち、東京大学工学部2号館（2006年竣工、地上12階総合研究教育棟）を用いて、総合的な先進的なファシリティマネジメントシステム技術の開発と評価、さらに、運用技術の確立を目指すとともに、本実証実験フィールドでの成果を、他の大学組織への横展開と、公共施設等への縦展開、さらに新しいビジネス領域を創造するに資する研究開発成果を目指している。

3.2 研究開発の概要

以下に、本研究研究コンソーシアムにおける研究開発計画の概要を述べる。

（1）ファシリティマネジメントシステムの構築実態の正確な測定と解析

（a）マルチベンダー、マルチサブシステム環境での統合的データ収集技術の確立

複数のマルチベンダーからなるサブシステム（BACnetIP/BACnetWSやoBIX/LonWorksなど）間での、計測・制御データの相互乗り入れ環境の構築に必要な技術仕様の策定と実システムにおける導入、その動作検証を行う、サブシステム間での統合的な計測・制御データの相互乗り入れに必要な技術仕様は、関連する技術標準化機関での提案などを行い、その普及と標準化を推進する。

このような、マルチベンダー環境でのファシリティマネジメントの実現に資する技術の確立は、スティスナプルファシリティシステムの実現を可能にする。すなわち、継続的な先進技術の導入と、複数技術の共存（システムのAvailability性の向上）を可能なものにし、ファシリティシステムの継続的進化と稼働信頼性の向上の実現に資する。

（b）大学における総合教育研究棟におけるデータ収集指針の確立

大学等の教育研究施設（なには公共設備）における、環境対策や省エネ対策に利用可能な、ファシリティ（ビルそのものだけではなく、その内で稼働
する実験装置などを含む）の計測と制御に対する指針を確立する。

（2）計測データの解析・表示による効果の検証
計測データの解析結果を、ファシリティの運用者および利用者に対して提示することができ、利用者の行動形態が改善され、活動の効率化や省エネが実現されることが多く知られている。今回取り組む、大学における総合教育研究棟の、利用者の統制が容易ではない典型的な事例である。

（3）先進的制御技術・制御システムの導入と
効果の検証
計測・解析したデータをもとに、ファシリティの管理・制御を行なうべきである。データの測定に関するシステムは、どのような測定システムならびに測定技術が、このような環境に効果的であるか。どのように、既設のファシリティに、付加的な測定装置を設置し運用するか。また、どのような測定データならびに測定装置が、効果的な管理制御に資するのかを実証環境において検証する。

3.3 研究開発計画の推進体制
ファシリティの設計、構築、運用、管理ならびに制御に関係するステークホルダーからなる、エコシステムの共同開発コンソーシアムの形成を目指した。すなわち、ICT 機器のベンダー、建築会社、総合電力会社、情報電力会社、セキュリティサービス会社、ビル管理会社、さらに、ファシリティのデベロッパ会社など、上記から下記まで、関係する企業が研究開発の情報を共有し、マルチペーパ環境で作業可能なファシリティシステムの研究開発を推進している。

3.4 今後の展開
本プロジェクトの成果は、他学への展開・教育・研究設備への展開、自治体を含む公共設備への展開に資する技術仕様の策定と普及を国内のみならず国外に展開すること、さらに相互接続性確立を目指した国際標準化活動の展開を計画している。我々は、FIAP（Facility Information Access Protocol）を研究開発し、現在、ASHRAE BACnet の拡張および IEEE 1888（UGCCnet Protocol：Ubiquitous Green Community Control Network Protocol）への提案活動を展開している（図 2）。

また、グリーン東大 ICT プロジェクトとは、同様の構造を持つ産官学連携プロジェクトを中国北京市において、清華大学を中心に設立・展開している。さらに、本プロジェクトを通じた知見は、新しいアプライケーションやビジネス領域の創成へと展開しようとしている。すなわち、新しい情報基盤の構築と提供によって、その本部の目的とは異なる創造的な展開が実現されることとしている。また、本プロジェクトの成果は、ファシリティにおける環境対策や省エネ対策に留まらず、積極的にファシリティシステムの構成設計や、これらが相互に作用して構成される都市空間の構造設計へと進化する可能性も持っている。ファシリティを構成するコンポーネントの協調動作を用いた最適化問題を解くのではなく（Reactive な対策）、最適化運用を実現するコンポーネントの配置の最適化を行う Proactive な対策への進化と進展の推進が今後方向性となろうならない。

4. システム概要と要素技術
4.1 システム設計の概要
設備ネットワークにおけるセンサやアクチュエータ間でアクセス・通信プロトコルとしては、BACnet/WS、oBIX、SNMP などが存在するが、これらは、アクセス先にセンサやアクチュエータ機器が存在することを想定して設計されており、基本的にはこれらの機器へのゲートウェイとしてしか機能しない。また、大量のデータ転送、保存および蓄積されているデータセットに対する種々の操作（検索、
集約化など）を行うことは想定されていない。GUTP では、データベースセントリックな機能・動作が、これまでのセンサとアクチュエータ間のゲートウェイ機能と共存・両立可能なシステムアーキテクチャ・プロトコルである FIAP（Facility Information Access Protocol）の設計を行った。すなわち、センサ・アクチュエータおよびゲートウェイ（GW）で、データの蓄積機器（Storage）とアプリケーション（APP：データの加工やユーザとのインタラクションを行うモジュール）を加えたシステムコンポーネントが相互接続可能となるためのプロトコル体系を設計した。これらのコンポーネントの区別を行うことなく、すべての多様なコンポーネントが自律的に通信可能となる。FIAPにおいては、3 つの通信プロトコル（FETCH, WRITE, TRAP）、2 つの Methods（data, query）、そして、4 つのコンポーネント（GW, APP, Registry, Storage）を定義した。今後、2 つの通信プロトコル（REGISTRATION, LOOKUP）、2 つの Method（registration, lookup）を拡張予定である。

FIAPのアーキテクチャ上の特長は、以下の通りである。

(1) 多様なサブシステム（Field Bus）を共用する Federation Networking構造（TCP/IP アーキテクチャの本質である自律的な選択肢 Alternatives の提供）

(2) データベースセントリックなシステム構造とオープンインターフェースの提供

(3) XML/UML を用いたデータ表記とデータ処理アルゴリズムの記述

(4) データ転送パイプとデータ処理モジュールの相互連接によるデータフローのパイプライン管理

(5) 大容量データ転送のためのファイルインタフェースの導入

オープンインターフェースの提供によって、フィールドに展開されるセンサの情報は、複数のアプリケーションシステムによって共有され、アクチュエータの制御も同様に複数のアプリケーションから操作可能なプラットフォームとなる。さらに、インターネットのグローバルな接続性によって、すべての設備関連機器が、地理的に制約なくグローバルな空間でのアクセシビリティを実現する。

4.2 実装概要とアプリケーション

東京大学本郷キャンパスの中心部に位置する工学部 2 号館（2005年竣工、地上 12 階・地下 1 階の総合研究教育棟）を実フィールドとして、実証モデルの設計と構築・運用を行った。

図 3 にシステムの概要、図 4 にいくつかの典型的なアプリケーションの動作状況を示した。
5. むすび

グリーン IT/ICT の活動を推進するにあたって社会全体のエネルギー消費量の把握に基づいた戦略の策定が必要である。ICT 製品自体のエネルギー消費量は、空調や照明などの Non-ICT 機器のエネルギー消費量に比べて小さい。しかし、ICT 機器なしには、これらの効率化と省エネルギーは実現できない。人間に例えれば、ICT 機器や ICT 機器が仕事をする場所であるコンピュータールームや IDC（Internet Data Center）は「脳」であり、ネットワークは「神経系」である。「賢く能率的な脳」と「俊敏に動作する神経」が、人間の効率で機能的な活動を実現するのは明らかである。「優れた筋肉を持った運動選手」でも、その制御が最適化されていなければ、「優れた筋肉を持たない運動選手」に負ってしまう。我々 ICT 系統の種類に、地球の未来が依存していると考えられるであろう。

参考文献
1）東芝グリーン ICT プロジェクト．www.gstp.jp
2）医師、“インターネット技術を用いたオープン環境・省エネ対策”．映像情報メディア学会誌．p．427-427．2009年4月

日射量予測システム「ソラリオン」の開発 一関西電力ほか

関西電力㈱（以下、同社）のグループ会社である関西気象工学研究所（以下、気象工学研究所）は、京都大学と共同で、関西地域を中心とした任意の地点*において24時間後までの日射量を1時間単位で予測するシステム「ソラリオン」を開発した。

*: 2府18県（大阪府、京都府、滋賀県、兵庫県、奈良県、和歌山県、三重県、福井県、岡山県、鳥取県、徳島県、香川県の全域、および石川県、富山県、福島県、島根県、高知県、愛媛県、岐阜県、愛知県の一部地域）

太陽光発電が大量に導入されると、気象条件により出力が大きく変動することを考慮に入れた需給調整が必要となるため。当社グループは、そうした出力変動を、より正確に予測する技術を確立すべく、現在、日射量と発電量の関係の評価や、気象予測情報を利用した日射量予測システムについて様々な検討を進めている。

今回、その一つとして、気象全般に関する調査・研究、気象情報の予測、気象コンサルティングを主な事業とする気象工学研究所が、太陽光発電を設置している家庭向けの日射量予測システムを開発し、本年3月1日から、ホームページ（http://meci.jp/）で公開することとなった。

今回開発したソラリオンは、太陽の位置と雲や大気の状況から気象を解析し、予測する数値モデルの WRF（The Weather Research and Forecasting: ワーフ）を用いて、日射量を予測するシステムで、地形のデータを詳細に反映し、特に、大阪市近郊では、解像度が0.5kmメッシュと、国内で最も小さな範囲で、日射量を予測することが可能である。

ホームページで日射量予測を見ることで、既に太陽光発電を設置している方には、太陽光発電を有効に使用できるツールとして活用もらい、その他の方については、太陽光発電に関心を持ってもらうきっかけとなればと考えている。

同社グループは、今後も様々な取組を通じて、太陽光発電の出力予測手法の精度を向上させるなど、太陽光発電の大量導入に向けた取組を進め、電気の安全・安定供給という使命を果たしつつ、低炭素社会の実現に貢献していく。