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Abstract. The relationships among autonomous systems (ASes) on the
Internet are categorized into two major types: transit and peering. We
propose a method for quantifying AS’ network size called magnitude by
recursively analyzing the AS adjacency matrix converted from a span-
ning subgraph of the AS-level Internet topology. We estimate the re-
lationships of inter-AS links by comparing differences in magnitude of
two neighboring ASes, while showing differences in the magnitude, rep-
resenting AS relationships appropriately through three evaluations. We
also discuss the applicability of this method to AS relationships-aware
application-layer traffic optimization.

1 Introduction

The Internet consists of thousands of autonomous systems (ASes) operated by
distinct administrative domains such as Internet service providers (ISPs), compa-
nies and universities. There are commercial relationships between interconnected
ASes, and the relationships are categorized into two major types [1]: transit and
peering. Transit relationships are also called provider-customer relationships, and
customer ASes purchase Internet access from their transit providers by paying
some amount of money. On the contrary, peering relationships are equal relation-
ships between interconnected ASes, and traffic exchanged between peering ASes
is free of charge. Therefore, transit traffic exchanged with provider ASes costs
more for customer ASes compared to that exchanged with customer ASes or traf-
fic exchanged over peering links from the economical viewpoint. Note that we re-
fer to a transit link from a customer AS to a provider AS and a link with opposite
orientation as customer-to-provider (c2p) link and provider-to-customer (p2c)
link, respectively. We also refer to a peering link as peer-to-peer (p2p) link.

Researches and discussions regarding application-layer traffic optimization
have been conducted [2, 3]. We propose a path selection method that takes into
account the types of AS relationships in content delivery networks utilizing peer-
to-peer technologies [4]. We show that the proposed method has reduced high-
cost transit traffic for residential ISPs, which provide their network to consumers
hosting content delivery network peers, by assigning link cost onto inter-AS links
and avoiding selecting high-cost paths. In the proposed method, we have used
the types of the relationships to assign cost into inter-AS links. However, there
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Fig. 1. AS relationships representation by differences in the network size

still exists a problem that most commercial ISPs do not want to disclose their
relationships because the interconnections are established by their commercial
contracts.

Several AS relationships inference algorithms [5–8] have been proposed. These
algorithms infer the relationships by analyzing AS paths in Border Gateway Pro-
tocol (BGP) routing tables according to the valley-free path model [9]. However,
these algorithms cannot infer the relationships of these invisible links though
there are lots of invisible inter-AS links in the set of AS paths extracted from
the BGP routing tables because the set of AS paths produce spanning sub-
graphs (i.e., parts) of the Internet topology and the number of ASes which
provide their BGP routing tables to public are limited. Here, we refer to links
which are not contained in the set of AS paths in publicly available BGP routing
tables as invisible inter-AS links. On the other hand, applications on the Internet
possibly utilize paths containing invisible inter-AS links as well for their com-
munications because the routing tables of ASes which provide their network to
these applications are usually different from the publicly available BGP routing
tables. Consequently, it is essential for AS relationships-aware application-layer
traffic optimization to estimate the relationships of these invisible links as well
as visible links. We note that invisible inter-AS links in an AS path which an
application utilizes for its communication can be found by the application with a
network management tool (e.g., “traceroute” tool), and the existing algorithms
cannot infer the relationships from the found AS path due to lack of AS paths.

In this paper, we propose a method for quantifying the AS’ network size,
which we call magnitude, by recursively analyzing the AS adjacency matrix ap-
proximated from a measured spanning subgraph of the AS-level Internet topol-
ogy according to inter-AS connectivities and a traffic flow model. We show the
differences in magnitude appropriately represent AS relationships through three
evaluations.

2 AS Relationships Estimation

Relationships between interconnected ASes are characterized by the exchanged
traffic volume and the network size [10–12]. The traffic volume exchanged over
transit links is highly asymmetric, and the traffic volume from a transit provider
to the customer is generally larger than that from the customer to the provider.
On the other hand, the traffic volume exchanged among peering ASes is nearly
symmetric. From the viewpoint of the network size, transit providers are larger
than their customers and peering ASes are nearly equal in size as well as ex-
changed traffic volume. Fig. 1 shows the AS relationships representation by dif-
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Fig. 2. The concept of recursive definition of magnitude

ferences in the network size. Links with positive and those with negative values
are considered p2c ones and c2p ones, respectively, and links with values around
0 are considered p2p ones. For example, degree, the number of interconnected
ASes, can be used as one of the indicators which represent AS’ network size [13].
It is said that differences in degree numerically represent the relationships, and
consequently, it has been used for AS relationships inference algorithms based
on the path analysis [5–8].

We propose a method for quantifying AS’ network size called magnitude
which represents AS relationships better than degree. The magnitude is com-
puted recursively by taking into account the magnitude of neighboring ASes
to improve the representation of AS’ magnitude. Fig. 2 shows the concept of
recursive definition of magnitude. In this figure, AS x and AS y have equal mag-
nitude (0.5) where the recursion level is n, but the magnitude of their neighbors
is different. This difference makes the magnitude of AS x and AS y different
where the recursion level is n + 1. Since the neighbors of AS y are larger than
those of AS x, AS y become larger than AS x by taking account the magnitude
of their neighbors. We then propose a method for estimating the relationships
from the quantified magnitude.

2.1 AS Magnitude and Inter-AS Traffic Flow Model

We use a measured spanning subgraph of the AS-level Internet topology for the
AS magnitude quantification. Let a graph GI = (VI , EI) be the whole AS-level
Internet topology, i.e., a set VI of ASes contains all ASes on the Internet and a
set EI of inter-AS links contains all inter-AS links though some of them may be
invisible from a measurement. We can measure subgraphs of the whole Internet
AS graph GI from AS paths in BGP routing tables. A measured subgraph is
generally a quasi spanning subgraph1 of the AS-level Internet topology. Here,
1 A quasi spanning subgraph denotes the subgraph containing almost all ver-

tices (ASes) even though it does not contain some edges (inter-AS links). The mea-
sured AS paths constitute a quasi spanning subgraph due to the existence of default
route configuration and so on; i.e., there exist a few invisible ASes as well as some
invisible inter-AS links.
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Fig. 4. Traffic flow assumptions

we define a graph GS = (VS , ES) as the measured spanning subgraph. Since
the graph GS is a quasi spanning subgraph, the set VS of ASes is a subset of
the set VI (i.e., VS ⊆ VI) and the set ES of inter-AS links is a subset of the
set EI (i.e., ES ⊆ EI). A complementary set ĒS which is the set of invisible
inter-AS links are represented by an equation of the form: ĒS = ES\EI .

From the measured spanning subgraph GS , we compute AS’ magnitude ac-
cording to the traffic flow model. In our AS magnitude quantification method,
we define that the magnitude is proportional to the total ingress traffic to the
AS at the steady state in the traffic flow model as shown in Fig. 3. In another
word, the magnitude represents the traffic density at the steady state in the
traffic flow model. Let tvivj be traffic from AS vi to AS vj , the magnitude of AS
vi is defined by Equation (1). A symbol ρvi denotes the magnitude of an AS vi,
subject to equations:

∑
vk∈VI

ρ2
vk

= 1 and ρvk∈V̄S
= 0.

ρvi := C
∑

vk∈nbr(vi)

tvkvi (1)

s.t. C = const.,
∑

vk∈VS

ρ2
vk

= 1

Here, the function nbr(vi) returns a set of neighbor ASes of AS vi, provided that
the links between AS vi and the neighbors are in the set ES .

We then introduce the simple traffic flow model to compute the magnitude
as shown in Fig. 4. We describe the assumptions in the model, as follows:

(a) The total amount of ingress traffic to AS vi is equal to the egress traffic of
AS vi:

∑
vk∈nbr(vi)

tvkvi =
∑

vk∈nbr(vi)
tvivk .
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(b) The amount of egress traffic from AS vi to AS vj is proportional to the
magnitude of AS vj (ρvj ): tvivj =

ρvjP
vk∈nbr(vi)

ρvk

∑
vk∈nbr(vi)

tvivk .

Since the magnitude is used in these assumptions and it is computed from
these assumptions, the magnitude is computed recursively. We compute the
steady state of ingress/egress traffic in these assumptions with fixed values of
magnitude (e.g., ρ = [1, · · · , 1]t for initial case), and then we recursively rede-
termine the magnitude from the traffic distribution at the steady state.

2.2 AS Magnitude Computation

The steady-state of traffic according to the traffic flow model described in the pre-
vious subsection is solved by eigenvalue analysis of a traffic transition matrix. We
first define a weighted AS adjacency matrix nA by the equation: nA :=

(
navivj

)
,

where vi, vj ∈ VS . Here, the left superscript n• (n ≥ 0, n ∈ Z) denotes the recur-
sion level. This matrix is extracted from the measured spanning subgraph GS .
Each diagonal element of the matrix nA is 0, and other elements are defined by
Equation (2a) for initial case (n = 0), and by Equation (2b) for other cases.

(i) n = 0

navivj =

{
1 : if AS vi and AS vj are adjacent
0 : otherwise

(2a)

(ii) n ≥ 1 (n ∈ Z)

navivj =

{
(n−1)ρvj : if AS vi and AS vj are adjacent
0 : otherwise

(2b)

The matrix nA where n ≥ 1 is defined recursively from the vector of magni-
tude (n−1)ρ. The matrix nA where n ≥ 1 is also represented by the equation:
nA = I (n−1)ρ 0A, where I denotes the identity matrix.

Next, we equalize the ingress and egress traffic on each AS by considering
that navivj represents the egress traffic from AS vi to AS vj . We define a traffic
transition matrix nT by Equation (3).

nT :=
( navivjP

vk
navivk

)
(3)

We note that the traffic transition matrix is represented by a form of the stochas-
tic matrix. Finally, we compute the steady state of traffic by eigenvalue analysis
of the traffic transition matrix. The steady state is determined by calculating the
left eigenvector of nT corresponding to the maximum eigenvalue. We define this
left eigenvector as the vector of magnitude: nρ = [nρv1 , · · · , nρvm ]t (s.t. ‖nρ‖ = 1,
m = ‖VS‖). Here, we note that the magnitude of an AS where n = 0 results in
a value of the AS’ degree multiplied by a constant, though we omit the proof.
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2.3 AS Relationships Estimation

From the quantified magnitude, we estimate the relationships of inter-AS links.
We define the difference in logarithmic magnitude for an inter-AS link ex from an
AS vi to an AS vj as the magnitude distance nδex . The magnitude distance nδex

is defined by Equation (4).

nδex := log10
nρvi − log10

nρvj (4)
s.t. ex = (vi, vj), ex ∈ EI , vi, vj ∈ VI

The distribution (e.g., the minimum and maximum values) of magnitude
distances is different for each recursion level n. We can compare the magnitude
distances for the same recursion level, but we cannot do it for different recursion
levels. To normalize the distribution of magnitude distances to uniform distribu-
tion, we define the ranked magnitude distance nδ′ex

for a inter-AS link ex from
the magnitude distances. Let a set nδS be a vector of the magnitude distances
for ∀e ∈ ES , the ranked magnitude distances are defined by Equation (5).

nδ′ex
:= 2

rank-of(nδex) − 1
‖ES‖ − 1

− 1 (5)

s.t. ex ∈ ES

Here, the function rank-of returns the rank of the magnitude distance nδex ,
sorting magnitude distances in the elements of the vector nδS in ascending order;
i.e., the returned value should be distributed uniformly in the range [1, ‖ES‖].
We note that the ranked magnitude distances are hardly applied to application-
layer traffic optimization because the ranked magnitude distances are defined
only for visible inter-AS links (i.e., ∀ex ∈ ES).

The magnitude distance nδex numerically represents AS relationships as shown
in Fig. 1. For example, if the absolute value |nδex | is around 0, two neighboring
ASes are nearly symmetric and the inter-AS link ex is estimated as p2p. Since
the magnitude distances numerically represent the relationships, we can infer the
type of the relationships from these magnitude distances by setting a threshold
in Equation (6).






nδ > nτ → p2c
nδ < −nτ → c2p
−nτ ≤ nδ ≤ nτ → p2p

s.t. nτ ≥ 0 (nτ : threshold) (6)

We note that the magnitude distances can be directly used for AS relationships-
aware application-layer traffic optimization without inferring the types of the
relationships by Equation (6) as well because they numerically represent the
relationships, despite the fact that the inferred types of the relationships can be
helpful to give some guidelines to applications.
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Table 1. The number of inter-AS links and the proportion by type of relationships

type of relationships #links proportion
sibling (s2s) 219 0.302%
peering (p2p) 6142 8.47%
transit (p2c/c2p) 66181 91.2%

3 Evaluation

We make three evaluations on the proposed AS relationships estimation method.
In the first evaluation, we evaluate the accuracy of the inference of types of the
relationships, which are inferred by Equation (6). We show that the types of
the relationships are inferred appropriately by the magnitude distances without
analyzing AS paths. We also show that the recursive computation of magnitude
improves the accuracy of peering inference. In the second evaluation, we show
the characteristics of the magnitude distances among well-known tier-1 ISPs.
Since the relationships between any two tier-1 ISPs are considered peering, we
show these peering links are characterized better by recursive computation of
magnitude. In the third evaluation, we show the proposed method can estimate
the invisible links by counting the number of the paths which follow the valley-
free path model.

3.1 Datasets

We use two types of datasets for the evaluation; 1) CAIDA’s dataset and 2)
RIB datasets. CAIDA’s dataset defines inter-AS links and the relationships, and
RIB datasets define AS paths. CAIDA’s dataset is used for both the magnitude
computation (i.e., as a quasi spanning subgraph) and the verification (i.e., as a
correct AS relationships dataset). RIB datasets are used only for the verification.
We describe these datasets below.

We employ “The CAIDA AS relationships dataset (10/08/2009) [14]” as
a quasi spanning subgraph for the magnitude computation and a correct AS
relationships dataset for the verification. The relationships in this dataset are
inferred by the algorithm [7, 8]. In this paper, we call this CAIDA’s dataset. This
dataset contains 32281 ASes and 72542 inter-AS links. We write up the number
of inter-AS links and the proportion by type of relationships in Table 1.

We also use Routing Information Base (RIB) datasets (archives: 01/08/2009–
05/08/2009) from “Route Views Project [15]” and “RIPE NCC Projects Routing
Information Service [16]”. We call these RIB datasets. We extract AS paths from
these datasets, excluding the paths which include private AS numbers, four-octet
AS numbers and AS234562. We summarize the measurement points, the data
2 Four-octet AS numbers can be translated into AS23456 when BGP routers do not

support four-octet AS numbers. Since we do not analyze BGP options in this paper,
we also exclude four-octet AS numbers to identify ASes.
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Table 2. Measurement points, the data sources, the number of unique AS paths and
the number of unique inter-AS links

measurement point abbr. source #unique paths #unique links

a) Oregon IX oregon-ix RV 1, 641, 700 69, 246
b) Equinix Ashburn eqix RV 257, 630 57, 726
c) ISC (PAIX) isc RV 433, 861 60, 641
d) LINX linx RV 784, 053 65, 774
e) DIXIE (WIDE) wide RV 208, 542 51, 328
f) RIPE NCC, Amsterdam rrc00 RIS 641, 324 64, 151
g) Otemachi, Japan (JPIX) rrc06 RIS 96, 951 45, 040
h) Stockholm, Sweden (NETNOD) rrc07 RIS 242, 386 56, 563
i) Milan, Italy (MIX) rrc10 RIS 291, 297 56, 241

“RV” and “RIS” stand for “Route Views Archive Project [15]” and “RIPE NCC
Projects Routing Information Service [16]”, respectively.
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Fig. 5. ROC curve on inferring peering and transit relationships where n ∈ {0, 1, 2, 3}

sources, the number of unique AS paths and the number of unique inter-AS links
in Table 2. We use AS paths in these datasets for the verification.

3.2 Evaluation 1: Accuracy of AS Relationships Inference

In this evaluation, we use CAIDA’s dataset for both the magnitude computa-
tion and the verification. We compute the magnitude for all ASes in the dataset
and magnitude distances for all inter-AS links in the dataset. We infer the rela-
tionships from the magnitude distances by Equation (6) with sliding the thresh-
old nτ , and verify inferred relationships by those relationships defined in CAIDA’s
dataset.

We draw a Receiver Operating Characteristic (ROC) curve on inferring peer-
ing and transit relationships in Fig. 5; we plot the false positive rate and the
true positive rate at x-axis and y-axis, respectively, with sliding the threshold.
It is commonly said that the area under the curve (AUC) represents the accu-
racy of the inference because points of lower false positive rate and higher true
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Table 3. Well-known tier-1 ISPs

AS no. Name AS no. Name
7018 AT&T 3549 Global Crossing (GBLX)
3356 Level 3 Communications (L3) 2914 NTT Communications (Verio)
209 Qwest 1239 Sprint

6453 Tata Communications 701 Verizon Business
3561 Savvis 1299 TeliaSonera
6461 AboveNet 2828 XO Communications

positive rate increases the AUC. This figure shows that the magnitude distances
represent both transit and peering relationships appropriately, and the recursive
computation improves the accuracy of peering inference. By comparing the AUC
on inferring peering, the values of AUC where n = {0, 1, 2, 3} are 0.720, 0.814,
0.856 and 0.871, respectively, i.e., the recursive computation improves the accu-
racy of peering inference. By comparing the AUC on inferring transit, the values
of AUC where n = {0, 1, 2, 3} are 0.977, 0.982, 0.980 and 0.974, respectively,
i.e., the recursive computation does not change the accuracy of transit inference
much. From these results, the proposed method with the recursive computa-
tion represents the network size and the relationships better than the method
without recursive computation (i.e., degree-based one). We note again that the
magnitude where n = 0 is degree multiplied by a constant.

3.3 Evaluation 2: Characteristics of Ranked Magnitude Distances
among Tier-1 ISPs

We showed the recursive computation improves the accuracy of peering inference
in the previous subsection. In that evaluation, we assumed that the types of AS
relationships defined in CAIDA’s dataset are correct, but the relationships in
CAIDA’s dataset may include inaccurate inferences. In this evaluation, we do
not use the relationships defined in CAIDA’s dataset to eliminate the influence of
inaccurate inferences in CAIDA’s dataset while we use CAIDA’s dataset for both
the magnitude computation. Instead, we evaluate the links among well-known
tier-1 ISPs. The links between any two tier-1 ISPs are considered peering. We
list the well-known tier-1 ISPs in Table 3.

We show the characteristics of AS relationships of the inter-AS links among
well-known tier-1 ISPs in Fig. 6. Each line represents a link between two neigh-
boring tier-1 ISPs. The relationships between any two tier-1 ISPs are consid-
ered peering. Hence, Fig. 6 shows the characteristics of magnitude differences
of peering links. This figure shows that the recursive computation of magnitude
decreases the absolute value of ranked magnitude distance |nδ′|. This means the
recursive computation of magnitude improves the accuracy of peering estima-
tion. the maximum values among the ranked magnitude distances of the links
between tier-1 ISPs are 0.178 where n = 0 and 0.0732 where n = 5.



10

n (recursion level)
ra

n
k
ed

 m
ag

n
it

u
d

e 
d
is

ta
n
ce

: 
0 1 2 3 4 5

-0.2

-0.1

 0.0

 0.1

 0.2
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3.4 Evaluation 3: AS Relationships Estimation for Invisible Links

In this evaluation, we use RIB datasets for the verification based on the valley-
free path model [9]. We annotate AS relationships to all the inter-AS links in
RIB datasets by Equation (6) with the threshold: nτ = 0. To show the advantage
of the proposed method, we annotate AS relationships to them by the relation-
ships defined in CAIDA’s dataset as well. We then count valid paths (i.e., paths
following valley-free path model). When we consider that paths between any two
ASes follow the valley-free path model, the number of valid paths represents the
accuracy of AS relationships inference.

We show the percentage of valid paths for each RIB dataset in Fig. 7. A
legend caida denotes the paths are annotated by the relationships defined in
CAIDA’s dataset, and the other legends n = {0, · · · , 5} denote the paths are an-
notated by the inferred relationships from the magnitude distances. We note
that larger values, in this figure, represent higher accuracy on inferring AS
relationships. Excluding the paths annotated by the relationships defined in
CAIDA’s dataset, the percentage of valid paths annotated by the magnitude
distances where n = 1 is highest for every RIB dataset. This means the orienta-
tions of transit links are represented the best by the magnitude distances where
n = 1. Additionally, including the paths annotated by the relationships defined
in CAIDA’s dataset, the percentage of valid paths annotated by the magnitude
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distances where n = 1 is highest for all of the datasets except oregon-ix and
rrc06. Though the relationships in CAIDA’s dataset are inferred so as to max-
imize the number of valid paths, the percentage is not highest. This is because
there are some links which are not contained in CAIDA’s dataset, but the mag-
nitude distances can be computed from the quantified magnitude if the edge
ASes are contained in the magnitude computation procedure.

4 Discussion

Inter-AS traffic flow model: We introduce a simple inter-AS traffic flow model
in Section 2.1 to compute the magnitude, but the actual inter-AS traffic flow
is not so simple. For example, we assume the total ingress traffic volume is
equal to the total egress traffic volume but the total ingress traffic volume is
generally larger than the total egress traffic volume at residential ISPs. To justify
the traffic flow model, we discuss the meaning of the model for the recursion
level n = 0. For the recursion level n = 0, the traffic transition matrix 0T
becomes a stochastic matrix; i.e., this model implies random walk-like transition
of traffic. We have described that the magnitude of an AS where n = 0 results in
a value of the AS’ degree multiplied by a constant. For the recursion levels n ≥ 1,
the traffic transition matrix nT is weighted by the magnitude of neighbors, and
the weighting procedure matches the hierarchical routing on the Internet; i.e.,
traffic tends to go to transit providers because the transit providers (larger ASes)
relay traffic to other ASes. Therefore, the traffic flow model is justified by the
definition of degree and the hierarchical routing. There is no doubt that the
traffic flow model and the weighting procedure can be modified to improve the
proposed method. We will work on this modification in future.

The recursion level: The recursion level means the hop count to which the
method takes into account the network size for the magnitude computation.
For example, n = 1 means the method takes into account the network size of
neighbors, and n = 2 means the method takes into account the network size of
neighbors and that of two-hop neighbors. From Evaluation 1 and 2, we show
that the accuracy of peering inference is improved by increasing the recursion
level n. On the other hand, from Evaluation 3, the orientations of transit links
are represented the best where the recursion level is n = 1. These results show
that the orientations of transit links are represented by the network size from
the local viewpoint (i.e., at most one-hop neighbors’ size), and the peering links
are represented by the network size from the global viewpoint.

AS relationships-aware application-layer traffic optimization: We have described
that the proposed method is applicable to AS relationships-aware application-
layer traffic optimization. Suppose, for instance, there are two content mirror
servers s1 and s2, and a client c, and the path from s1 to c and that from s2

to c are {s1 → p2p → c} and {s2 → c2p → p2c → c}, respectively. To reduce
high-cost transit traffic, the client should select the server s1. The relationships
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of each inter-AS link between s1 and c, and s2 and c are required to be inferred
to enable AS relationships-aware server selection. The magnitude distances or
the inferred relationships by Equation (6) can be used for it. As described in Sec-
tion 2.3, the ranked magnitude distances are hardly applied to application-layer
traffic optimization. The magnitude distances are easily applied to applications
by using values of these distances as metric directly. When we use the inferred
relationships, the threshold should be tuned for each application; e.g., some ap-
plications permit false positive and the others do not.

Paid peer consideration: On the Internet, there are so-called paid peering rela-
tionships, which are intermediate relationships between peering and transit. The
proposed method can quantify the network size well, and the relationships are
characterized by the magnitude distances. Hence, we do consider the possibility
of estimating the paid peer relationships as well as the applicability applicability
of the proposed method for estimating these complex relationships in future.

5 Related Work

Gao [5] has proposed an algorithm to infer AS relationships. The author has
shown that the relationships can be inferred by comparing the number of neigh-
bors (i.e., degree) between two neighboring ASes, analyzing the AS paths in BGP
routing tables based on the valley-free path model [9]. Battista et al. [6] improved
Gao’s algorithm. They mapped this problem into weighted MAX2SAT (maximum-
2-satisfiability) problem to compute the orientation of transit links. However, on
the real Internet, there are lots of invisible inter-AS links. Therefore, it is diffi-
cult to apply these AS relationships inference algorithms based on path analysis
to AS relationships-aware application-layer traffic optimization because applica-
tions often utilize links which relationships are not annotated by these algorithms
from the spanning subgraphs.

6 Summary

We proposed a method for quantifying the AS’ network size called magnitude
by recursively analyzing the AS adjacency matrix which is approximated from
a measured spanning subgraph of the AS-level Internet topology. We showed
that the differences in magnitude appropriately represent AS relationships by
three evaluations. We also showed that the recursive computation of magnitude
improved the accuracy of peering inference. The contributions of this paper are
followings: 1) The proposed method can estimate AS relationships of any inter-
AS links, and the estimated relationships are applicable to AS relationships-
aware application-layer traffic optimization. 2) The proposed method uses AS
adjacency information which is more highly available information than AS paths
which have been commonly used in the previous works.

We will apply the estimated magnitude distances to AS relationships-aware
application-layer traffic optimization, and design an architecture to utilize these
distances as a traffic control metric.
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