
DTIPN: Delay Tolerant IP Networking for Opportunistic
Network Applications

Hideya Ochiai
The University of Tokyo/NICT

jo2lxq@hongo.wide.ad.jp

Kenichi Shimotada
The University of Tokyo
ken@hongo.wide.ad.jp

Hiroshi Esaki
The University of Tokyo/NICT

hiroshi@wide.ad.jp

ABSTRACT
This paper proposes delay tolerant IP networking (DTIPN),
an alternative architecture for delay and disruption tolerant
networks. This architecture directly fits into the Internet
protocol architecture, still providing delay and disruption
tolerant support for application message delivery without re-
lying on the well-known Bundling. DTIPN takes IP packets
as asynchronous data delivery units, identifying the loca-
tion of hosts by IP addresses. We have implemented the
architecture and carried out several experiments with 10
intermittently-connected or mobile nodes in the campus of
the University of Tokyo. The result, on our prototype im-
plementation, indicates that DTIPN architecture has well-
adaptive nature to the Internet with providing practically
useful performance.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: Network
Architecture and Design—Store and forward networks; C.2.2
[Computer-Communication Networks]: Network Pro-
tocols—Protocol architecture

General Terms
Design, Experiments, Performance

Keywords
Delay Tolerant Networks, Internet Architecture, Campus-
Wide Experiment

1. INTRODUCTION
In the challenged network environment, any communica-

tion nodes are always virtually networked over intermittent
physical connection. This idea opens up the new commu-
nication paradigm that extends the communication infras-
tructure everywhere from tiny embedded devices to even out
of the Earth.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MobiOpp ’10, February 22-23, 2010, Pisa, Italy.
Copyright 2010 ACM 978-1-60558-925-1/10/02 ...$10.00.

The impact of the emergence of delay tolerant networks
(DTN)[8, 4, 5] is remarkable. Sensor networking community
is now applying the concept to its framework[18, 21]. Mobile
ad-hoc networks (MANET) reseach community is also tring
to use it[17, 1]. Researches of vehicular ad-hoc networks
(VANET) cannot be discussed without DTN[6, 12].

However, the widely-discussed DTN, which was originally
designed for interplanetary communication, is still one of
the approaches for the challenged network environment. IP-
based sensor networking or MANETs with 100-node scale
can take another approach with proposing alternative archi-
tecture for delay tolerant networking. The architecture of
widely-discussed DTN is not well-adaptive to the Internet,
and the management and operational issues have not likely
been deeply discussed, which is mandatorily required in the
deployment phase.

This paper proposes delay tolerant IP networking (DTIPN)
architecture, which we have developed as a different style of
delay tolerant networking, assuming about 100 nodes in a
challenged network segment. The architecture does not rely
on Bundling, which has characterized the well-known DTN.
It uses IP address for node locators, still providing delay
tolerant support for application message delivery. DTIPN
is much more adaptive to the existing IP network than the
widely-discussed DTN, regarding to practical management
and network operation.

Generally, all the communication protocols targeted at
the challenged network environment must avoid synchronous
communication style. Making state synchronization over
physically disrupted connectivity is basically impossible or
it would get only a weak synchronization. The DTN has
avoided synchronous communication between communica-
tion ends and enabled asynchronous message delivery, by di-
viding an end-to-end TCP session into multiple sub-sessions.

DTIPN, our approach, takes IP packets as asynchronous
data delivery units. IP networks originally provide asyn-
chronous packets delivery, and it is basically allowed for
large delay: even one hour or one day delay. In DTIPN,
the data link layer for the challenged environment enables
IP packet delivery over physical intermittent connectivity,
and the transport (or, the application) protocol layer sup-
ports the long-delay delivery of application protocol data
units (APDUs).

DTIPN is much more adaptive to the Internet architec-
ture. Anyone can easily deploy independently around their
Internet edges with the conventional management operation.
The widely-discussed DTN requires new management and
operational schemes, especially when we come to deploy it

Figure 1: Delay tolerant IP networking architecture

as a globally managed network, because it basically estab-
lishes a new network in the overlay manner.

One of the contributions of this paper is to demonstrate
how the architecture can be implemented and how it is
practically useful. For this purpose, we have implemented
DTIPN and carried out some experiments, and we present
the performance of our prototype system in this paper. At
the data link layer, we adopted potential-based entropy adap-
tive routing (PEAR), which was proposed in our previous
work[15], as an IP packet delivery framework for wide-range
of mobility models. At the application protocol layer, we im-
plemented a forward error correction (FEC) scheme, which
would be practically useful for moderate packet loss in the
Internet space. Thus, the evaluation work is totally based
on the real implementation. We have carried out four types
of experiments with 10 nodes using the campus of the Uni-
versity of Tokyo.

This paper is organized as follows. Section 2 provides the
related work. We propose DTIPN architecture in section 3.
Section 4 provides our evaluation work with presenting the
prototype implementation. Section 5 gives the discussion,
and finally this paper provides the summary in section 6.

2. RELATED WORK
The widely-discussed DTN was proposed by Burleigh et.

al. [4] and Kevin Fall[8], and the internet engineering task
force(IETF) has published it as RFC4838[5]. The archi-
tecture is characterized by the Bundle layer, which deploys
DTN framework as an overlay network and enables asyn-
chronous message delivery. The background of the architec-
ture came from the study of TCP performance reduction and
failure over large delay and high packet loss networks[11].
In order to avoid TCP-based synchronous communication
between communication ends, they have proposed to take
hop-by-hop delivery at the Bundle layer.

DTIPN takes different architecture to enable asynchronous
message delivery over the challenged environment. It uses
IP packets as asynchronous data delivery units, and enables
application message delivery by the transport or the applica-
tion layers. This approach directly fits into the Internet pro-
tocol architecture, indicating that DTIPN has great adap-
tivity to the current Internet.

This work inherits our previous works. IP over DTN[16]
has proposed the basic concept for DTIPN. Potential-based
entropy adaptive routing (PEAR)[15] is an autonomous mes-
sage routing algorithm over the intermittently connected
networks. One of the goals of this paper is to demonstrate
the feasibility of deployment and the usability for practical
applications.

Figure 2: Entropy-adaptive message delivery

IP multicast practically takes non-reliable communication
styles because of its difficulty in making state synchroniza-
tion (i.e., data acknowledgement and retransmissions)[9],
just as delay tolerant networking. In this regard, DTIPN
can also take non-reliable communication styles. However,
it would get reliability to a certain extent by forward error
correction schemes just as Parity-based loss recovery[14] and
Uni-DTN[10] has presented. We also take this approach at
the transport (or, the application protocol) layer.

3. DELAY TOLERANT IP NETWORKING
This section describes the architecture for delay tolerant

IP networking (DTIPN). It takes IP address as a communi-
cation endpoint identifier, uses IP packets as asynchronous
data delivery units.

3.1 Requirements
We, here, summarize the basic requirements for DTIPN.
(1) A communication endpoint must be identified

by an IP address. Even when the communication end is
physically isolated, we consider that it is virtually connected
to the network. Taking IP address for endpoint locator re-
duces the operational cost compared to the additionally re-
quired costs in the well-known DTN.

(2) The network must use an IP packet as an
asynchronous data delivery unit. The delivery of an
IP packet is one of the asynchronous communications. An
IP network provides send and recv method, and it carries IP
packets in the best effort manner. Basically, it is allowed to
have large delay for packets delivery. Whether it delays one
minute, one hour, or even one day, it does not matter if the
delay is expected at the application level.

(3) The data link layer for the challenged net-
work environment must assume possible link dis-
ruption and must save IP packets against possible
losses as much as possible. We must design a framework
that provides delay and disruption tolerant support for IP
packet propagation over isolated network boundaries to de-
liver them even with large delay.

(4) The application layer protocol must not have
shared states across a network. Interactive communi-
cation in a short time is no longer available in our target
environment. Thus, all the application programs must as-
sume asynchronous message delivery. The protocols used by
those applications must not rely on synchronous communi-
cation style, too.

Figure 3: PEAR software design

3.2 Architecture
We present the architecture of DTIPN in figure 1. The

architecture itself fits into the Internet protocol suite. The
major features of this architecture are potential-based en-
tropy adaptive routing (PEAR) at the data link layer and
asynchronous data transfer protocol (ADTP) at the appli-
cation protocol layer.

In fact, PEAR is one of the implementations of the link
layer. Another message delivery scheme can be also applied
here (e.g., [20, 13, 3, 7, 19]) as long as it provides delay and
disruption tolerant support for IP packet delivery.

PEAR, in this architecture, autonomously enables the de-
livery of IP packets over intermittently connected networks
in ad-hoc manner. Even if it takes a long time because of
physical network disruption, it manages to deliver packets
by its store-and-forward scheme. It adapts to wide-range of
mobility models. Section 3.3 describes the internal design of
PEAR.

ADTP enables asynchronous delivery of APDUs between
remote application instances, making use of UDP for the un-
der layer transport protocol. It provides send and recv meth-
ods as the application programming interface(API). ADTP
must be tolerant for the delay of IP packet delivery – the re-
ceiver side should wait until it gets the whole APDU. ADTP
does not have to provide reliable communication. Thus,
some data loss should be assumed at the application pro-
grams. However, some efforts can be made in ADTP imple-
mentation to get reliability to a certain extent. Section 3.4
discusses in more detail.

The major difference with the widely-discussed DTN is
that all the hosts have IP address for communication end-
point identifier. The widely-discussed DTN has its own iden-
tification schemes, and thus it should have its own network
management and operational schemes. DTIPN directly fits
into the existing Internet, which would help global delay
tolerant networking with smaller operational costs.

3.3 PEAR for Link Layer Implementation
Potential-based entropy adaptive routing (PEAR) fits into

the link layer in the DTIPN architecture. This section pro-
vides the overview and the software design of PEAR. For
theoretical details (e.g., potentials and replica management
scheme), please refer to our previous work[15].

3.3.1 Overview
PEAR, which was originally designed as a DTN frame-

work, is practically useful for various scenarios. It performs
effective routing over wide-range of mobility patterns in ad-
hoc manner. A node learns what nodes are nearby and what
nodes exist over intermittent connectivity. It performs rout-
ing and propagation of messages, adaptively changing the
form of delivery pattern depending on the contact or mobil-
ity model.

Figure 2 shows how the message delivery pattern should
change depending on the pattern of node contact. A bolder
link indicates higher probability of node contact. This fig-
ure presents two networks; the left one is characterized as
small entropy case, and the right one is as large entropy
case. At the small entropy case, a node mostly meets with
some particular nodes. As entropy increases, contact prob-
ability between any nodes becomes uniform. The definition
of entropy is provided in section 4.3.

At small entropy cases, PEAR performs message delivery
in the best form, by choosing the closer (and it is the best)
hop at every transmission. However, at large entropy cases,
which is no more deterministic and impossible to make any
prediction, the main delivery force in PEAR is replication
of messages in the network. This behavior is reasonable,
because making replication increases the redundancy of the
delivery path. Interestingly, PEAR achieves this adaptive-
ness without being aware of the mobility model itself.

As for transport, PEAR in DTIPN has only to deliver
typical-sized IP packets. This enables system implementa-
tion quite simple (see, section 4.2).

3.3.2 Software Design
We provide a software design of PEAR in figure 3. It has

six functional blocks. We, here, describe the details.

• IP Manager: IP Manager implements an epidemic-
based IP-to-PEAR name map construction algorithm.
This enables resolution of IP address to PEAR node
name.

• IP Encapsulator: IP Encapsulator encapsulates an
outgoing IP packet by a PEAR protocol frame, and
decapsulates an incoming PEAR protocol frame.

• Advertisement Manager(AM): AM periodically ad-
vertises potentials to its neighbors by radio-range mul-
ticast. AM submits the received potentials to poten-
tial table (PT), and publishes the current potentials
obtained from PT to the neighbors. AM also manages
the dissemination of the map of IP address and PEAR
node name.

• Potential Table(PT): PT manages all the poten-
tials of neighbors and computes the potentials of the
next time step by the potential-field construction al-
gorithm[15].

• Nexthop Table(NT): NT generates and maintains
nexthop table for each destination by the potentials
managed at the PT.

• Message Manager(MM): MM implements the replica
management scheme that PEAR defines[15]. It pro-
vides an interface of sending and receiving packets for
IP Encapsulator.

Figure 4: Network configuration for the experiment

Figure 5: Experiment scenarios

3.4 Asynchronous Data Transfer Protocol
The role of ADTP is to provide the API for application in-

stances to send and receive messages by application protocol
data unit (APDU). It decomposes an APDU into UDP data-
grams when sending it, and composes the original APDU
from the received UDP datagrams. It must be tolerant to
(1) moderate loss, (2) large latency, (3) out-of-order arrival
and (4) duplicate arrival of IP packets. It should also be
aware of traffic congestion; i.e., huge number of packets must
not be sent in a burst manner.

PEAR carries IP packets at the link level, saving them
from fatal losses as much as possible. However, even when it
provides 100% packet delivery, the Internet sometimes drops
them from the network. FEC, as widely discussed, must be
the most practical method for the moderate data loss or
error in asynchronous communication, and we also take this
method for ADTP. However, we must also be aware that
the packet loss might occur randomly or sometimes in burst.
We can read this kind of discussion in the past literatures:
e.g., parity-based reliable IP multicast transmission[14], and
Uni-DTN[10].

We basically take reed-solomon algorithm as a FEC scheme.
In order to implement it, assuming some burst losses and
congestion, ADTP takes interleave and slow transmission.

4. EVALUATION
One of the contributions of this paper is to confirm the

feasibility of deployment and to study the performance of the
system with real prototype system in order to demonstrate
the applicability to practical scenarios.

The first half of this section describes the settings of the
experiment and the prototype implementation which we have
developed. The latter part provides the analyses of perfor-
mance and environmental features.

4.1 Experiment Settings

We have carried out experiments for both static-cases and
dynamic-cases. We did on static cases, because even if nodes
are statically setup, wireless links frequently disrupts in the
real environment, causing intermittent connectivity in com-
munication. This paper presents four types of experiment
scenarios, which we call (1) StaticA, (2) StaticB, (3) Dy-
namicA and (4) DynamicB.

Figure 4 is the basic network configuration applied to all
the experiments. The data server in the well-connected net-
work (133.11.168.0/25) receives messages from the sensor
over the intermittently-connected network. The sensor peri-
odically sends its messages to the server (133.11.168.120) by
ADTP. PEAR network manages to deliver the IP packets to
the gateway.

Figure 5 shows the physical deployment for each experi-
ment. S is the message sender (i.e., sensor) and GW is the
gateway for the upper Internet link.

StaticA: Nodes were statically deployed, one node for one
floor in our building (i.e., Eng. Bldg.2, in the Univer-
sity of Tokyo).

StaticB: Nodes were statically deployed, two nodes for one
floor in our building.

DynamicA: Nine nodes were statically deployed in the cam-
pus, and one node (No.10) has moved between Posi-
tion(A) and GW, and Position(B) and GW alternately
in 20 minutes per cycle.

DynamicB: Five nodes were statically deployed in the cam-
pus, and other five nodes have moved inside the dashed-
area freely. They sometimes returned to the gateway
(about three or four times) during the experiment.

For StaticA and StaticB, we conducted the experiment for
12 hours, and for DynamicA and DynamicB, the experiment
was made for three hours and one hour respectively.

Figure 6: DTIPN prototype mobile node

During the experiment, S has sent 5k, 15k and 45k-byte
dummy messages every 90 second each to the data server.
According to the ADTP’s FEC configuration, this generates
120 packets in 90 second: i.e., 80 [packet/min].

The parameter settings of PEAR were as follows: D = 0.2,
ρ = 0.02, α = 0.04, message TTL = 2400[sec]. The TTL of
advertisement was 30 [sec], the time for dissemination was
1800 [sec], and the maximum buffer entry size was 4096.
With this setting, maximum buffer occupancy would be
around 3200 [entry]. Thus, it never exceeds the available
buffer entry.

4.2 Prototype Implementation
We programmed in C and deployed into Armadillo-220[2].

Armadillo-220 is an embedded computer with 8Mbyte pro-
gram memory and 32MByte working memory. It works with
ARM9 200MHz CPU and Linux operating system. We here
added an USB-stick IEEE802.11g module (GW-US54Mini2,
Planex Communications Inc.) for ad-hoc communication
with neighbors. We used linux-2.6.12.3-a9-15 for its kernel
image. As for IPv6 support, please refer to section 5.

The footprint of PEAR is not large. The source code has
only 3225 lines, and it works around 34k byte in object code
size. We developed ADTP as a library for applications. The
source code has 640 lines, including reed-solomon algorithm.
The library has 32k byte in object code size.

We packed all of them into a handy box as figure 6. We
assembled 11 boxes; one for the gateway and others for static
or mobile nodes (including the sensor).

4.3 Contact Features
Figure 7 shows the aggregated contact graphs for each sce-

nario. A line between two nodes shows contact. The bolder
line indicates larger average contacted time. The presented
average contact entropy was provided by the following defi-
nition.

Sc(n) = −
X

k∈(N−{n})

qe(n,k)log(qe(n,k)) (1)

qe(n,k) =
pe(n,k)

P

k∈(N−{n}) pe(n,k)

(2)

Here, Sc(n) is the contact entropy of node n. pe(n,k) is

the ratio of contact-time to the total-time between node n
and k taken over statistically enough time period. N is the
set of the nodes in a network.

As we can see, the contact graph certainly corresponds to
the physical deployment; we can expect the physical location
from these graphs. And we clearly found that even they
are statically setup, the contact changes over time and the
contacted ratios have varied.

We have also observed asymmetric contacts (e.g., node
2 received advertisement from node 3, but node 3 did not
receive from node 2). However, it is not presented here be-
cause it makes the graph quite complicated.

4.4 Performance Analysis

4.4.1 Potential-Field Construction
Figure 8 shows the pattern of potential-field over time for

StaticA, DynamicA and DynamicB. This shows the tran-
sition of node’s potential-value associated to the gateway
node. In drawing these sequences, we have omitted some
nodes, for example, the DynamicA case only presents the
potential of Sender, Node 7, Node 9 and Node 10.

In StaticA, potential-field is almost stable but with some
ripples caused by intermittent connectivity even with neigh-
bors. In DynamicA, node 10 always stayed with lower po-
tential. In DynamicB, the potential-field became quite com-
plicated with lots of upside-downs.

4.4.2 Packet Delivery Pattern
Figure 9 shows the pattern of IP packet delivery from the

sender (S) to the gateway (GW). Each graph is associated
to the delivery of one IP packet. The number along with an
arrow shows the time when the IP packet has been copied;
it is adjusted so that the GW arrival time is to be zero.

The delivery patterns have branches, making redundant
paths for packet delivery. This sometimes has certainly
improved delivery latency with increasing the overhead of
transmissions and buffer occupancy.

We have also analyzed the average redundancy of delivery.
We defined delivery redundancy R as R = copyCount

hopCount
, where

copyCount is the number of the same packets copied in the
network, and hopCount is the number of hops from S to GW.
If R = 1, no branches is made in delivering the packet. If it
becomes large, lots of packet copies are made with improving
delivery rate and delay. From the result, we can read that as
entropy increased, PEAR has also increased the redundancy.

4.4.3 Delivery Rate and Latency of IP Packets and
APDUs

Figure 10 shows the distribution of IP packet and APDU
delivery latency for each experiment. The distribution was
certainly dependent on the physical settings.

As we have expected, ADTP delivery has taken more time
than IP packet delivery, though in DynamicB case, distri-
bution of IP packet and APDU was almost the same. How-
ever, APDU was recovered by ADTP before receiving all the
packets associated to the original message.

The packet delivery rate from S to GW was 100% for all
the scenarios. The packet drop rate from GW to the data
server was 0.50%; there were 10 hops in IP network from
the GW to the server. ADTP has achieved 100% delivery.

4.4.4 Control Plane Overheads

Figure 7: Summarized node contacts

Figure 8: Potential-field changes over time

We have analyzed the ratio of control plane transmissions
(i.e., advertisement and replica management) to the total
transmissions in PEAR network. The result was approxi-
mately 10% – 20%, which indicates that transmission power
was consumed mostly by data transfer rather than control
signals.

We have also analyzed how the buffer entries were used.
In StaticA and StaticB cases, more than 90% of the entries
had cleared the data body, which indicates that most of the
messages had been delivered in a short time and data-cleared
entries remained there to delete the message from the net-
work until the TTL expired. In DynamicA and DynamicB
cases, about 30%–50% of the entries had data body. This
occupancy acted for replicating packets in the network.

5. DISCUSSION
With our prototype-based experiment, we experienced that

DTIPN would be practically useful for some opportunistic
network applications. In our experiment settings, it has
achieved 100% delivery of messages with acceptable over-
heads. This indicates that DTIPN is quite ready to be de-
ployed in the real environment at the Internet edges.

Our prototype software also supports IPv6 already, though
the experiment was carried out on IPv4 networks because
the kernel version of the embedded computer was old, and
the software could not use IPv6 properly. We confirmed that
it worked on Linux kernel 2.6.28-15-generic (ubuntu 9.04),
which means that the software itself is also ready for IPv6.

The architecture, especially the link layer, can be applied
to any network configurations even to the core networks.
However, we consider that it should be applied to edge net-
works in practice, and that it would be the major use case
in the real situations.

DNS-based host identification and IP address resolution
are not in the scope of this paper. IP address should be
resolved beforehand or other additional methods should be
explored to allow DNS-based networking.

6. CONCLUSION
We have proposed DTIPN, an alternative architecture for

delay tolerant networking. DTIPN takes IP packets as asyn-
chronous delivery units, identifying the location of hosts by
IP addresses. In DTIPN, the data link layer provides dis-
ruption tolerant support in delivering IP packets over the
challenged network environment, and the application proto-
col layer enables message transfer by APDU.

We have implemented the architecture with PEAR for the
link layer and ADTP for the application protocol layer. We
have carried out several experiments in the campus of the
University of Tokyo, and analyzed the result regarding to
delivery rate and latency, transmissions, and buffer occu-
pancy. The result indicates that it is practically useful in
the real environment.

The evaluation result was made on the real implementa-
tion of PEAR and ADTP. We confirmed, with these imple-
mentations, that DTIPN could adapt to the Internet very
easily with practically useful performance.

7. REFERENCES
[1] G. F. Aggradi, F. Esposito, and I. Matta. Supporting

predicate routing in DTN over MANET. In ACM
CHANTS, 2008.

[2] Armadillo220. http://www.atmark-techno.com/.

[3] J. Burgess, B. Gallagher, D. Jensen, and B. N. Levine.
MaxProp: Routing for vehicle-based
disruption-tolerant networks. In IEEE INFOCOM,
2006.

[4] S. Burleigh, A. Hooke, L. Torgerson, K. Fall, V. Cerf,
B. Durst, K. Scott, and H. Weiss. Delay-tolerant
networking: an approach to interplanetary internet.
IEEE Communications Magazine, 41(6):128–136, jun
2003.

[5] V. Cerf, S. Burleigh, A. Hooke, L. Torgerson,
R. Durst, K. Scott, K. Fall, and H. Weiss. RFC4838:
delay tolerant networking architecture, apr 2007.

Figure 9: Packet delivery pattern

Figure 10: IP Packet and application message delivery latency

[6] P.-C. Cheng, K. C. Lee, M. Gerla, and J. Harri.
GeoDTN+Nav: geographic dtn routing with navigator
prediction for urban vehicular environments, jun 2009.

[7] D. Demmer and K. Fall. DTLSR: Delay tolerant
routing for developing regions. In ACM NSDR, 2007.

[8] K. Fall. A delay-tolerant network architecture for
challenged internets. In ACM SIGCOMM, 2003.

[9] S. Floyd, V. Jacobson, C.-G. Liu, S. McCanne, and
L. Zhang. A reliable multicast framework for
light-weight sessions and application level framing.
IEEE/ACM Transactions on Networking,
5(6):784–803, dec 1997.

[10] D. Kutscher, J. Greifenberg, and K. Loos. Scalable
dtn distribution over uni-directional links. In ACM
SIGCOMM Workshop, 2007.

[11] T. V. Lakshman and U. Madhow. The performance of
TCP/IP for networks with high bandwidth-delay
products and random loss. IEEE/ACM Transactions
on Networking, 5(3):336–350, jun 1997.

[12] F. Laurent and G.-C. Felipe. Using delay tolerant
networks for car2car communications. In IEEE
Inductrial Electronics, 2007.

[13] A. Lindgren, A. Doria, and O. Schelen. Probabilistic
routing in intermittently connected networks. LNCS,
3126:239–254, sep 2004.

[14] J. Nonnenmacher, E. W. Biersack, and D. Towsley.
Parity-based loss recovery for reliable multicast
transmission. IEEE/ACM Transactions on
Networking, 6(4):349–361, aug 1998.

[15] H. Ochiai and H. Esaki. Mobility entropy and message
routing in community-structured delay tolerant
networks. In ACM AINTEC, pages 93–102, 2008.

[16] H. Ochiai, K. Shimotada, and H. Esaki. IP over DTN:
large-delay asynchronous packet delivery in the
Internet. In IEEE ICUMT workshop, 2009.

[17] J. Ott, D. Kutscher, and C. Dwertmann. Integrating
DTN and MANET routing. In ACM SIGCOMM
workshop, pages 221–228, 2006.

[18] B. Pasztor, M. Musolesi, and C. Mascolo.
Opportunistic mobile sensor data collection with scar.
In IEEE MASS, 2007.

[19] T. Spyropoulos, K. Psounis, and C. S. Raghavendra.
Efficient routing in intermittently connected mobile
networks: the multiple-copy case. IEEE/ACM
Transactions on Networking, 16(1):77–90, feb 2008.

[20] A. Vahdat and D. Becker. Epidemic routing for
partially-connected ad hoc networks. Technical report,
Duke University, 2000.

[21] Y. Wang and H. Wu. Delay/fault-tolerant mobile
sensor network (DFT-MSN): a new paradigm for
parvasive information gathering. IEEE Transactions
on mobile computing, 6(9), sep 2007.

