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SUMMARY

A novel host behavior classification approach is proposed as a preliminary step toward traffic classification and
anomaly detection in network communication. Although many attempts described in the literature were devoted
to flow or application classifications, these approaches are not always adaptable to the operational constraints of
traffic monitoring (expected to work even without packet payload, without bidirectionality, on high-speed
networks or from flow reports only, etc.). Instead, the classification proposed here relies on the leading idea that
traffic is relevantly analyzed in terms of host typical behaviors: typical connection patterns of both legitimate
applications (data sharing, downloading, etc.) and anomalous (eventually aggressive) behaviors are obtained by
profiling traffic at the host level using unsupervised statistical classification. Classification at the host level is not
reducible to flow or application classification, and neither is the contrary: they are different operations which might
have complementary roles in network management. The proposed host classification is based on a nine-
dimensional feature space evaluating host Internet connectivity, dispersion and exchanged traffic content. A
minimum spanning tree (MST) clustering technique is developed that does not require any supervised learning
step to produce a set of statistically established typical host behaviors. Not relying on a priori defined classes of
known behaviors enables the procedure to discover new host behaviors, that potentially were never observed
before. This procedure is applied to traffic collected over the entire year of 2008 on a transpacific (Japan/USA) link.
A cross-validation of this unsupervised classification against a classical port-based inspection and a state-of-the-art
method provides assessment of the meaningfulness and the relevance of the obtained classes for host behaviors.
Copyright © 2010 John Wiley & Sons, Ltd.

1. INTRODUCTION

A major issue in network traffic analysis is classifying and characterizing traffic. Performing an accurate
classification is indeed essential in various respects, such as traffic control, application identification,
defense against attacks, and anomaly detection. Common approaches are based on rules and signatures,
combining port number identification with payload signature matching. However, they are often
observed to fail, either because of packet encryption, arbitrary or dynamic port use, or because different
protocols or utilizations employ the same single port (e.g. doing software update on port 80). The
possibility of analyzing unidirectional traffic only, because of asymmetric routing, also prevents the use
of many such methods. Statistics-based approaches are also regularly used, amongst which supervised
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learning methods [1] are the most recently used, for packet or flow classification. However, their
performance strongly depends on the choice of the training datasets, and hence on the availability of
traces where ground truth of some form is assumed known—a situation which is rare, if even
attainable, for real Internet traffic. Another major drawback of supervised classification is the fact that
unknown traffic types cannot be identified. Therefore, unsupervised classification should be preferred.
Additionally, host-level classification, though it has greater usefulness for the global analysis of a link
or a network than usual application or flow classification, has rarely been performed, mostly because
of the complexity inherent to host characterization.

Therefore, the focus in this article is on characterizing host-level behaviors and classifying hosts, in
an unsupervised manner. The goal consists of the identification of classes of computers (or hosts)
characterized by their mixture of traffic, automatically from the statistical profile of their communica-
tion, without any prior knowledge about existing classes of hosts. The proposed work is intended as
a kind of pre-filtering step of traffic analysis, preliminary to more specific operations of network
management (e.g. anomaly detection, application identification). Our rationale is that, on backbone
links, using methods for network management on every packet or flow is not easy, or even achievable,
due to the high load and the computational resources that would be needed. Given this context, the
objective of the current work is to provide a first general view of what is transported on this link, at
the level of the hosts (which are less numerous than flows, and more stable in behavior). This view
could then be used as an indication of which hosts, flows or packets should be inspected more closely
for network management (using existing methods for flow or application classification, or for anomaly
detection). In any case, host classification is not reducible to flow or application classification (and
neither does the contrary hold), because today’s Internet uses consist of mixtures of different services,
so that a host can no longer be characterized by a single service. Hence conducting a priori an
enumeration of classes of behaviors becomes a hopeless task. The choice of an unsupervised approach
allows the splitting of hosts into groups with different behaviors and, most importantly, the finding of
new and/or unknown classes of behaviors (mix of traffic, new applications, anomalies or malicious
attacks, etc.) besides the expected classical ones (P2P, Web, etc.). Also, it avoids the conceptual and
practical difficulties inherently associated with training set preparation. To that end, a classification
technique is proposed that makes use of an extended characterization of the host traffic patterns. It is
further required that only a small number of parameters have to be tuned, and that the technique is
applicable to monitor backbone links: it should work without packet payload inspection, with
unidirectional traffic data only (no bidirectionality in data due to load balancing or other routing
policies), for high-speed networks and/or from flow reports only. Even many state-of-the-art methods
[2,3] do not work for unidirectional traffic [1]. The constraints stemming from such requirements rule
out most the the classification procedures classically involved in an intrusion detection system (IDS)
[4,5].

There are two major novelties in this contribution. First, nine connection pattern-based features are
involved for the characterization of host-level traffic. It will be argued how and why these nine features
provide a relevant description of both the transport and connection layers of host traffic, as well as their
functional and social behaviors (popularity, acting as servers or not, communicating with one or many
hosts, etc.). Second, there is no reason a priori why host clusters should have convex structures in the
9D connection feature space. Therefore, their identification from standard clustering methods [6] can
become very difficult. This therefore motivates the development and use of a recent and efficient
technique: classification is performed using a minimum spanning tree (MST)-based clustering algorithm
that can identify non-convex sets as classes in the feature space. The proposed procedure is evaluated
on real traffic traces collected on a transpacific link. Data (the MAWI dataset) are publicly available, at
http://mawi.wide.ad.jp [7].

The remainder of the article is organized as follows. Traffic classification related works are discussed
in Section 2. The rationale behind the choice of the nine features and their precise definitions and
meaning are detailed in Section 3. An efficient MST-based clustering method is described in Section
4. Results obtained from real traffic traces and validation, by traffic manual inspection and
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cross-validation against classical methods are reported in Section 5. This host classification yields
fruitful insights into the real traces inspected (e.g. there are different usages of the same protocols).
Conclusions are drawn in Section 6.

2. RELATED WORK

Traffic classification procedure can be broadly split into two categories: rule-based vs. statistics-based
ones. We will not conduct a complete survey of existing methods [1], and only some elements are
provided to compare and contrast the proposed method with those in the literature.

Rule-based. Snort [8] is the paradigm of rule-based IDS, inspecting packet payload and comparing it
with its signature database. It works for traffic classification, but fails to identify encrypted or emerging
applications. Other approaches based on heuristic rules (e.g. port numbers) are deemed reliable and are
often used because the rules are designed based on human intuition and give results comparable to the
findings of experts (if given enough rules). In particular, BLINC ‘multilevel traffic classification’ [9]
focuses on communication flow structure among hosts and recursively identifies flows per application.
It is an interesting approach, but still has drawbacks that all rules and communication patterns
(represented as graphlets [9]) should be predefined and the order in which they are applied affects its
performance. Furthermore, it aims at identifying server application flows rather than client ones. Also,
as for the host-level classification, when there is a mixture of application flows, they are independently
identified. Finally, some studies [1,10,11] show that BLINC does not work at its best on backbone links.
We will, however, compare our work to results given by BLINC, which appears as one of the
state-of-the-art classification methods at the host level, and one of the few with easily available
implementation. Also, the results obtained in Section 5.4 will show that BLINC provides classification
results that are acceptable, even if not perfect. Recently, an original work classified hosts by mining the
Google database [12]; a limitation here is that it seems to have some difficulties in identifying client
hosts and P2P application users, finding only a small proportion of them in the traffic. As we know that
P2P is a major part of traffic in the MAWI dataset [13], this method does not appear to be suitable for
comparison. More generally, signature- and port-based approaches are accurate for well-known traffic,
but cannot identify unknown ones (e.g. zero-day attack).

Statistics-based. Several supervised learning methods (e.g. neural network [14], Bayes’ theory [3], and
support vector machine [1]) have been applied to traffic classification. However, their accuracy depends
on a correctly labeled training dataset: this is difficult to construct for real Internet traffic. Unsupervised
clustering methods (e.g. K-means [2], AutoClass, DBSCAN [6] or entropy-based profiling [15]) have also
been used, grouping packets or flows with similar features (see reviews of unsupervised classification
[4,5], though oriented toward anomaly detection). Note that these works often use fewer features for
describing the traffic than we propose in the next Section (in Xu et al. [15], for example, only source
ports, destinations ports, and destination IP are used). A part of the originality of the present work is
to involve metrics relevant to network traffic information both at a global level of the host, and for the
packets or flows it emits (or receives), and not only features related to individual packets or flows. As
a consequence, related methods cannot give classification at the host level (the objective here) which
is relevant for the global monitoring of a network and its hosts.

Web-based. An original approach to host classification is based on the Google search engine [12]. This
approach allows one to classify hosts without traffic traces by mining the Google database. Still, it has
limitations in identifying client hosts and P2P application users.

Here, unsupervised classification is performed on network-based features so as to identify host
behaviors.

UNSUPERVISED HOST BEHAVIOR CLASSIFICATION 319

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 20: 317–337
DOI: 10.1002/nem



3. FEATURES OF CONNECTION PATTERN

The first contribution is to analyze how a collection of features (or attributes) can be used to statistically
parametrize traffic at the host level.

In Karagiannis et al. [9], a graphlet description of traffic at the host level, complemented by functional
and/or social level features, is proposed, that can be read as a connection pattern characterizing a host.
However, graphlets, essentially living in a space of potentially infinite dimension convey far too much
information for appropriate use in any unsupervised statistical classification procedure. Actually,
diversity in graphlets is such that Karagiannis et al. [9] had to resort to the design of a set of rules,
aiming at identifying, amongst a set of known application graphlets, the one that best matches that of
a given host. As a consequence, only simple patterns can be identified while no new class nor any
mixture of traffic can be discovered.

Instead, the goal of the present contribution is to represent host connection patterns in a space of
traffic features aimed at balancing the parsimony/relevance trade-off: the space dimension must be
kept as low as possible (as opposed to the approaches in Sadoddin and Ghorbani [4] and Lazarevic et al.
[5]), for processing efficiency and ease of interpretation; while carrying rich enough information to
allow the discrimination of different host behaviors. To that end, nine features labeled Fn, with n = i, . . . ,
ix, are defined. For each host, they are computed and used as a 9D feature vector. These nine features
are gathered into three groups sensing, respectively, the host network connectivity, dispersivity and
traffic content. In the proposed approach, each host can be characterized either as a source of traffic
(meaning that it emits packets having this IP source), or as a destination of traffic (packets with its IP
as destination). This would end up with two classes for each given host: one pertaining to its IPsrc
behavior (which is discussed in detail here), and one relevant to its behavior as IPdst. The latter is not
discussed in this article, for the sake of simplicity. Mutatis mutandis, the results that would be obtained
with the same methodology for hosts as destination of traffic are similar in the sense that hosts (seen
as clients, servers, doing transfers, etc.) would usually be classified as having the same roles even
though the traffic is seen in the reverse direction. The conciliation of both points of view would be a
major asset for traffic management. However, being a different task in itself, it will not be conducted
in the present work, and will only be discussed shortly at the end.

I. Network connectivity. These first three features describe the way a host is connected to the Internet,
consisting of:

(i) the number of peers (or destination IPs): the peers of a given host are defined as being the destination
IPs to which at least one packet is sent to in the trace. This feature distinguishes one-to-one
communications (e.g. downloads) from one-to-several (e.g. browsing) and from one-to-many (e.g.
netscans, viruses);

(ii) the number of source ports, divided by the number of peers (or destination IPs): servers reply usually on
a single, fixed source port for classical protocols, while clients open a different (usually random)
port for each connection to a server. Large values often betray attacks (many connections initiated)
or port scans;

(iii) the number of destination ports, divided by the number of peers (destination IPs): likewise, this feature
probes whether the analyzed IP peers have a server behavior or not.

These parameters, or variations of them, are classical in the traffic classification literature. The
number of peers describes the social behavior of the host, notably its popularity in communicating with
other computers. A normalization by the number of peers is introduced for the second and third
features to better quantify the functional behaviors of the host and enables one to identify whether it
is a client (usually one port for a given peer), a server (many ports, many peers), or a piece of an
overlay network (small number of ports, many peers). Note also that ICMP is handled as a different
port number, as in netflow. Beyond the mere number of ports used, these first three features convey
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richer information regarding the pattern of connectivity of the host, and convert this complex network
connectivity pattern into numerical indices, which are simpler to exploit.

II. Connection dispersion in the network. Because features Fi to Fiii are not sufficient to assess the social
or functional role of a host, two features are introduced to characterize the dispersion observed in the
list of peers (or IPdst) associated with a given host. To quantify the spreading in the IP space of the
peers of a given host, the use of variances or kurtosis of the distribution is not suitable. IPs are actually
not valued and there is therefore no meaning in taking a mean over the values of the IPs, or over any
power of them. Only the repartition of the probabilities is meaningful. Because the complete distri-
bution of the peers in the IP space would be too complicated to characterize, its Shannon entropy S is
classically used instead, as it is known to relevantly measure the distribution dispersion [16]. Entropy
for IP distributions has been previously used in traffic analysis [17], to check whether peer distributions
in the IP space are of spiky or flat type. This solution is consistent with the aforementioned
parsimony/relevance trade-off, but a refinement is introduced: entropy is not computed directly on the
distribution of the entire IP addresses but instead on those of the different bytes in the IP space:

(iv) the ratio of the entropies of the second and fourth bytes of IPdst: S(IP2)/S(IP4);
(v) the ratio of the entropies of the third and fourth bytes: S(IP3)/S(IP4).

Let us explain the motivations behind this refinement. Because most IP addresses are reserved, and
because some subnetworks are more populated than others, distribution of peers over the IP space is
not random in real cases. This is even more so for backbone link traffic, as it conveys only packets
targeting a specific subpart of the Internet. In IPv4, the first and second bytes usually correspond to
locations or corporations managing IPs, while the fourth one represents hosts in the same subnetwork
and distributions of regular traffic inherits from this structure. Therefore, computing S directly over IP
does not account for the strong structure of the IP space, while byte base entropy ratios do. Indeed, as
can be seen in Figure 1 (left), for most regular traffic entropy measured on IP2 tends to be just a little
lower than that on IP4. Conversely, a large difference in these entropies is likely to betray scanning. This
motivates the computation of entropies of the IPdst second, third and fourth bytes (denoted IP2 to IP4)
and then the use of entropy ratios.

Let us further detail the benefits of using byte entropies as compared to the simpler entropy on IP,
S(IP). A host sending a couple of packets to 1000 real HTTP servers on the Internet has the same S(IP)

Sasser virus

All traffic

1.0

0.0
0.0 0.5 1.0

0.5

0.0
0.0 0.5 1.0

S(IP )

S(IP )

2

4

Figure 1. Connection dispersion. Left: The entropies of IP for the various hosts in traffic is
represented as a scatter plot of S(IP2) vs. S(IP4); each dot represents a host. Two different areas are

apparent: S(IP2) << S(IP4) and S(IP2) � S(IP4), which can be distinguished by taking the ratio
Fiv = S(IP2)/S(IP4). Right: distribution of this feature after normalization (fiv) for traffic associated

with the Sasser virus only, and for the whole traffic
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as a scanner (or virus) sending packets toward 1000 IPs over a subnetwork, in an organized manner,
whereas S(IP2) (and possibly S(IP3)) differ since the scanner sends packets to a limited number of
subnetworks. Hence byte entropies display a higher variability in the last bytes than in the first ones.
Conversely, some viruses and malwares are targeting random hosts, missing the fact that some
subnetworks are more populated than others. Again, this behavior is not visible on the single S(IP) but
are likely to be seen when comparing S(IP2/3) and S(IP4). For instance, the ratio Fiv = S(IP2)/S(IP4)
distinguishes Sasser traffic from regular traffic (see Figure 1, right). S(IP1) is not used because traffic
routing constrains the possible values taken over a link, and, for traffic on a transit backbone link (such
as the transpacific link analyzed hereafter), values for the first byte vary only weakly. However, S(IP1)
would be useful if the interest is in network-wide classification.

III. Host traffic content. Finally, packet sizes and numbers are used as follows, so as to characterize the
type of traffic emitted, with no recourse to payload inspection. Indeed, in the distribution of packet size
for the entire traffic (see Figure 2, computed from the total traffic of the MAWI data [7] in 2008), two
modes are clearly observed standing out at the extrema of the possible packet size: one for small
packets and one for large packets. In between, the distribution shape varies, depending on the type of
traffic (observed peaks are representative of various applications or protocols). Consequently, four
additional characteristic features are retained:

(vi) the mean number of packets per flow: this roughly distinguishes elephant flows from mice flows or
non-connected flows (likely attacks or scans);

(vii) the percentage of small-size packets (�144 bytes) in emitted traffic: small-size packets mostly consist
of signaling traffic;

(viii) the percentage of large-size packets (�1392 bytes) in emitted traffic: large-size packets indicate data
exchange traffic, such as downloads;

(ix) the entropy of the distribution of medium-size packets, defined here as packets larger than 144 bytes
and smaller than 1392 bytes in emitted traffic.

This last feature specifically points toward web or interactive traffic, usually displaying higher
variabilities in packet sizes than other types of traffic. Also, some protocols use fixed-size packets,
which can obviously be measured by the entropy of the distribution of medium-size packets. Recent
studies [18,19] showed significant signatures in the packet size distribution for traffic analysis, even
though numerous protocols are increasingly trying to vary packet size to avoid being easily detectable.

0 500 1000 1500

10
−3

10
−2

10
−1

10
0

Packet Size (byte)

P
ro

ba
bi

lit
y 

(lo
g−

sc
al

e)

Figure 2. Distribution of packet size (for the data used in Section 5). Histogram in log-scale, with
bins going from 0 to 1500 bytes, in steps of 48 bytes. The thick vertical lines are the limits, decided

from this distribution, of the small and large packets, corresponding to its two dominant modes.
They respectively account for 46% and 44% of the packets, with a large drop in probability

between the chosen limit and the probability of the medium-sized packets, defined here as packets
larger than 144 bytes and smaller than 1392 bytes (in accordance with the definition of the features)
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Normalization of the feature space. Classification amounts to ordering distances in this 9D space,
defined above. The chosen features naturally vary in large (number of ports, peers) or narrower
(entropies) ranges. To balance their relative importance, a nonlinear transform is applied to each feature
Fn: fn = (2/p)arctan(Fn/Rn), where Rn are reference parameters that ensure the renormalization of all
features into the common range of values [0,1]. Parameter Ri is set to 10, corresponding to average
number of peers, and found to relevantly separate few from many peers. Parameters Rii and Riii are both
set to the actual number of peers Fi. For entropies, features (iv) and (v), being ratios, are naturally
normalized. Hence, fiv and fv correspond to angles in the S(IP2/3) and S(IP4) spaces. The size of flows
Fvi is scaled by Rvi = 100; Fvii and Fviii are naturally normalized, expressed as a percentage. Finally, feature
Fix, entropy of midsize packets, is naturally scaled into [0,1] with a division by log K (where K is the
number of bins involved in the packet size distribution). All these normalization parameters may
require tuning with the nature of the studied link, yet the choice of their precise values has been
checked that they do not critically vary the performance of the proposed classification procedure.

Features of connection patterns vs. graphlets. The selected features are claimed to be representative of
the transport-level behavior of a given host. To check for that, the features and the graphlets (from
Karagiannis et al. [9]) of two specific hosts are shown in Figure 3. The nine features are displayed (from
0 (left) to 1 (right)) and are compared against graphlets as a convenient way to visualize the type of
activities of the hosts. Features (i)–(iii) obviously reflect the number of nodes to put in the graphlets.
The remaining features complement the description. For instance, host A is mostly doing HTTP
requests over TCP: it uses a small to medium number of peers and src ports, whereas it targets a single
same dst port (turning out to be port 80) and emits a dominant proportion of small packets (feature
(vii) is close to 1). Clearly, the nine features satisfactorily reveal the typology of this HTTP client
behavior. For host B one would have a hard time to interpret the graphlet or to find a known class of

Figure 3. Features of connection patterns and graphlet. Comparison for two given hosts (with
anonymized IP provided in the trace) in the trace of 1 February 2008, of the computed 9D features
and of the associated graphlets. The value between 0 and 1 of each feature is indicated by the thick
vertical bar on the scale (0 is on the left, 1 on the right). Host B displays complex behavior for its
graphlet; to better understand what happens and for the sake of example, its features as IPdst (the
last line, ‘B (dst)’) are given. A complete interpretation of the traffic of these two hosts is given in

the text: A is mostly doing HTTP request over TCP; B has a mixture of traffic (P2P, Ping-flood)
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traffic giving rise to such a graphlet. Instead, the quantitative features (shown here both as sender and
receiver) provide information that can be dealt with in an automated manner, using a suitable
unsupervised clustering method. From the analysis of the feature values, it can guessed that this host
displays a mixture of traffic and, indeed, manual inspection reveals that it combines P2P traffic with
many peers with the emission of a Ping-flood aiming at a large number of destination hosts. Such host
behavior is typically of the type that the unsupervised classification method described below enables
us to identify.

Computation of the features. Finally, let us note that features (i)–(vi) could be calculated from netflow
reports. Note here that flows are defined classically, either by considering all packets sharing the same
five-tuples during 15 min to be in the same flow, or by using the same method as for netflow reports,
with timeouts of a few minutes. For short traces, this was not changing the results. Owing to
computation and memory constraints, though, most netflow reports use sampled data when through-
put is high, implying a non-reversible loss of information. Because the goal here is primarily to assess
the relevance of the proposed method, we do not use netflow reports and, instead, measure flow
parameters (e.g. Fi or number of ports) directly from traces. As this question already has classical
answers (e.g. netflow) the procedure is not detailed here: in our implementation it involves hashing
techniques, and is sufficiently fast and memory efficient to work online on any backbone using a
consumer desktop PC. Some recent works [20,21] share a common spirit, using sketches. Features
(vii)–(ix), not available in netflow reports, are computed directly from packet traces. However, these
features are easy to compute online from traces. This would be a welcome addition to usual flow
reports. Robustness to sampling is beyond the scope of the present contribution and left for future
work.

4. UNSUPERVISED CLASSIFICATION USING MINIMUM SPANNING TREE

The benefits of using unsupervised classification to detect new types of host (and traffic) have been
discussed earlier; this rules out supervised methods such as support vector machines (SVM). Because
the shapes of the clusters cannot be expected a priori to be convex sets, and because the classification
procedure has to work in the nine-dimensional feature vector, it is chosen to rely on a minimum
spanning tree (MST) for classification. From graph theory, an MST is defined, for a given set of nodes,
as the fully connected acyclic graph whose edge total length is minimal, amongst all possible trees (see,
for example, Marchette [22] and Graham and Hell [23] for a tutorial introduction). The benefits for
using an MST clustering procedure fulfill all requirements listed above: it is unsupervised, hence
avoiding recourse to a labeled traffic database (which is rarely available and which would anyway
require regular actualization); and it yields a posteriori and data-driven clusters, hence enabling to
discover new classes of (not previously expected nor obtained) behaviors. Also, the motivation stems
from the fact that the clusters obtained are in no manner constrained to be convex or of a specific shape:
clusters of hosts would emerge from regions of densely connected regions, be they of bent shapes,
hyperplanes, hyperspheres or of any geometry. See Grikschat et al. [24] and Galluccio et al. [25] for
examples of MST-based clustering methods that can uncover complex-shaped clusters in other contexts.

Additional motivation for using MST-based techniques relies on some more theoretical but never-
theless attractive features. MST belong to the class of quasi-additive graphs and can therefore be seen
as entropy estimators [26]. As a consequence, the clusters output by the proposed algorithm are actually
optimal with respect to an entropy minimization criterion, as shown elsewhere [27] and rediscovered
recently [28]. Furthermore, the relationship between MST features and manifold properties has recently
been highlighted: when dealing with high-dimensional data that may lie on a lower-dimensional
manifold, this graph-based approach allows handling it in some natural way [24]. Finally, the
possibility to address large dataset problems should also be emphasized, as MST constructions may be
quite easily implemented so that the computational burden is maintained in O(N log N) operations.
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Let us now explain how the MST clustering technique is customized and tuned for the classification
of host behaviors and detail a complete description of the procedure. It consists of three steps, as
sketched in Figure 4, on a simplified (for sake of clarity) yet real example in a reduced 2D feature space.

I. Compute MST. From the selected traffic data, the 9D features fn are computed for each host and the
corresponding MST is computed in this 9D space. For efficiency, we use a classical greedy algorithm
to build the MST, starting from a random host (as it is known that the MST is unique and will not
depend on this choice). Because some features take only integer values, the feature space is made
continuous by adding random values uniformly spread in [0,1] to Fn, and hence prior to the
normalization transformation. This transforms an area where a large number of hosts take the same
integer value into dense regions. This can be read as an alternative solution to the introduction of
weights at nodes where hosts are collocated.

II. First clustering. Edges of the tree are sorted by decreasing lengths, and the longest ones are
removed to get independent components. The edge length threshold depends on the desired number
of clusters, and is in relation to the number of hosts in the data (and hence the mean distance between
hosts). It is currently set to T = 0.25, as a result of a trial-and-error approach. The precise value of this
threshold is found to be not overly sensitive. For instance, it remains valid when used to analyze traffic
recorded on the same MAWI dataset, for other years.

Clustering by cutting edges in MST is known to be unstable in the presence of outliers (e.g. rare
anomalies), or when there is some ‘jitter’ of the vertices (which is possible for Internet traffic because
of mixed host behaviors), hence requiring refinements to identify relevant classes, leading to a third
step.

III. Identify dense clusters. The most dense subpart (cores) of the clusters identified at step II are
detected. They are defined as being subtrees of cardinality larger than 10, whose nodes are connected
by edges of length smaller than T′ = 0.05. This threshold is currently selected by trial and its automatic
determination will be studied thoroughly in future contributions. When two cores are found within the
same cluster of step II, they are split into separate ones by removing the longest edges along the path
between cores, on condition that the distance that separates them is large enough: the number of pairs
of points, belonging to the two different sub-clusters, whose distance is below T is calculated; if this
number is a low percentage (less than 10%) of all possible inter sub-cluster pairings, sub-clusters are
split into independent classes. Finally, only significant clusters, consisting of at least 25 hosts, are kept.

The proposed operational approach for cluster identification deserves a brief discussion. Steps II and
III in the procedure requires ‘hand-tuned’ parameters based on some priors or expertise. As already

(1) (2) (3)

Figure 4. MST clustering procedure. For illustration purposes, a set of hosts is spread into a
(reduced 2D) feature space (1); the corresponding MST is shown (2) with the longest edges in

dashed lines and the shorter edges in solid lines. Step II (edge cutting procedure) then yields the
clusters shown in plot (3). Step III of the procedure is not illustrated here as it makes sense mostly

in a space with more dimensions and with more hosts involved
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outlined, the results that are presented in the papers show good robustness with respect to variation
in the threshold value. However, a fully unsupervised data-driven algorithm should include automatic
estimation of these later parameters. Estimating the right number of clusters and their centroids is a
difficult problem, for which no universally adopted strategy exists. Among recent approaches are Prim
curve thresholding [29], spectral clustering methods [30] and diffusion maps [31], to cite but a few. Prim
curves allow unfolding of the high-dimensional distribution into a one-dimensional curve that
highlights the presence of high-density (respectively low-density) areas in the dataset. Setting the
threshold may rely upon a Neyman–Pearson strategy to maximize the false cluster detection probability
[32]. Spectral clustering exploits the structure of the Eigen-decomposition of the graph Laplacian. The
number of significant eigenvalues allows estimation of the number of clusters. However, this approach
requires a parameter that may be difficult to tune if the clusters have very different characteristic sizes.
A characteristic length is also required for defining the diffusion kernel in Lafon and Li [31]. Although
a thorough discussion of unsupervised clustering methods is beyond the scope of this paper, it is worth
mentioning that these latter methods are very promising and must be investigated in future work, to
provide a fully automated procedure.

The proposed three-step procedure yields an adaptive (or data-driven) number of dense and
significant clusters of hosts, whose shapes and numbers of hosts per cluster are neither identical nor
a priori defined (see Figure 4). Notably, the clusters do not need to be hyperspheres and can be
non-convex. Hence they can consist of any complex manifolds of any dimensionality. The method
described here has not been designed or finely tuned for the specific dataset that is used in the next
section, and was based on generic principles. As a consequence, the performance of the methodology
would not change dramatically on other data.

5. RESULTS AND CROSS-VALIDATION

5.1 Dataset: description and clustering

The traffic analyzed here, taken from the MAWI traffic repository [7], consists of publicly available
15-min pcap traces with anonymized addresses and no payload. Traffic is collected on a 1 Gbps
transpacific link between Japan and the USA (Samplepoint-F). Note that even if traffic is recorded in
both directions, and because of the asymmetric nature of WAN routing, traffic of a given host is not
necessarily collected in both directions. Specifically, traces do not usually contain both request and
answer direction of a given flow. This feature has already been mentioned elsewhere [13] and is
consistent with findings in another report [33]. This forbids the use of a number of classification
methods [2,3] specifically requesting bidirectionality. The link mostly carries commodity traffic so that
the main traffic is web, followed by P2P (yet transcontinental P2P traffic displays unusual features, as
discussed below). More detailed descriptions of its content can be found elsewhere [7,13,34].

First, the host MST-based clustering algorithm is applied to 7 days in January 2008, hence yielding
a set of unsupervised clusters. The chosen days are 8, 9, 10, 15, 16, 17, and 22 January 2008, so as to
have a mix of both weekdays and weekends. Second, 50 other traffic traces, also recorded in 2008 (5
days each month)1 are analyzed: a host is associated with the cluster to which it has minimum distance,
where distance to a cluster is defined here as the minimum distance to any point belonging to the
cluster. Should this distance be larger than T, it remains unclassified. Days are picked without prior
knowledge to preclude subjectivity. Each trace is processed independently; hence whenever a host is
present in several, it is regarded as new (which is consistent with its traffic being likely to vary from
one day to another). Only results for hosts that send at least 1500 packets during a 15 min trace are

1More precisely, the days were the 1st, 8th, 15th, 21st and 29th of each month.

326 G. DEWAELE ET AL.

Copyright © 2010 John Wiley & Sons, Ltd. Int. J. Network Mgmt 2010; 20: 317–337
DOI: 10.1002/nem



reported, so as to keep a number tractable for manual inspection of their traffic (to check for relevancy
of results with a network expert). Both directions—Japan to the USA and back—are analyzed at the
same time.

This methodology for data analysis lead us to the clustering of host behaviors. The largest clusters
are further reported in Figure 6. Before analyzing them, let us first turn to the labeling of the trace.

5.2 Trace labeling for validation

Because the goal of the present work consists of assessing the relevance of clusters (and hence to
explain the chosen labels), comparisons against some form of data ground truth are needed. However,
for real traffic (as the MAWI traces), ground truth is not available per se. Many algorithms can help to
classify packets and hosts to obtain a basic labeling, hence easing the assessment of automatic
classification procedures. As payload is not available here, methods that rely on deep packet inspection
cannot be used. This is a limitation of the methodology adopted for validation; however, absence of
payload is a very frequent situation in analysis of network traffic, especially for a posteriori analyses
and research studies (due to privacy issues and to the size of datasets with payloads). Also, using
payload, known applications can be recognized but it does not help to identify unknown applications,
nor is it useful directly for host classification, which is the objective here.

For validation and interpretation of the clusters that are identified by MST-based clustering, we first
rely on our expertise of Internet traffic, and more particularly of the MAWI dataset gained from
previous analyses conducted over it [7,13,34]. To guide the labeling work of network practitioners, and
as shown in Kim et al. [1], a first step of port-based analysis is sufficient to identify most legacy
applications such as web, mail, and DNS. The anomaly detection method, introduced in Dewaele et al.
[34], then allows us to tag as such most of the anomalies occurring in the analyzed traffic. Finally, a
set of heuristic rules (some being inspired by those given in other works [9]) complete the tools used
to label manually the traces and behavior of the hosts. As a side note, let us remark that in the analysis
of the content of the traffic hosts are defined as being a specific IP. In many networks, a NAT process
is used that blurs the strict correspondence between an IP and a host: a given IP can be used by
different computers. When the host associated with the IP changes (e.g. because DHCP is used), it does
not matter much as we are using short-duration traces (15 min) that are processed independently: the
risk is reduced by having a given IP used by another host during this period. For NAT using port
translation, several computers can be under one unique IP at the same time. Ignoring this is currently
a limitation of the reported analyses, both with the proposed MST-based clustering and with classical
port-based or BLINC classifications that are used for comparison (none of these methods distinguish
between hosts having the same IP). The methodology and discussion about cross-validation would
have to be improved in future studies, by taking into account the NAT mechanism.

From that point, the clusters found will be described in terms of their traffic content as found by
manual inspection of the traces, before we turn in Section 5.4 to cross-validation with other automated
classifiers.

5.3 Identified clusters

Figure 5 shows three clusters (chosen for the sake of the example) as projections onto the subspace
spanned by the three first features (high-dimensionality precludes any graphical representation of the
9D space). These projections illustrate that clusters display a significant variety of shape, many being
elongated manifold, and that they are likely to partially superimpose in any projection subspace. This
therefore reinforces the conviction that higher-dimension representation spaces are needed for valid
clustering, and that the MST-based technique makes sense for finding clusters with such shapes.

Figure 6 displays the connection features (in mean and variance) of the most populated clusters
obtained from the proposed host MST-based clustering technique. Combining the trace labeling and the
analyses of the similarity of the values taken by the features for each cluster enables us to group and
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label them into classes of behaviors: letters correspond to different kinds of port usages (while ‘No.’ was
the automatic number given by the algorithm). Clusters labeled as T (for transfer) consist of hosts
whose traffic uses few ports on both sides. Servers (S clusters) send packets to a large number of ports
from a limited number of ports (e.g. web servers send packets always from port 80). Conversely, clients
(C clusters) send packets from many ports to a limited number of dst ports. They are further divided
into two groups depending on the number of peers. Clusters P (for P2P) group hosts using a large
number of both dst and src ports.

As a first observation, let us note that a number of MST-based clusters gather two or more protocols
(as seen by labeling of the trace) and conversely that some such protocols are split into several MST
clusters. This helps in grouping the clusters together. Let us detail the major classes and their
differences.

Clusters T1–T5 are mostly one-to-one connections, usually using a single port. Inspection of the five
largest such clusters shows that their dominant traffic consist of a mix of HTTP and P2P, most of them
characterized by long flows. Deeper analyses reveal that they are split on the basis of packet sizes: T1

contains mostly small packets, whereas those of T2 are large. This discriminates the two sides of a
downloading activity (be it through HTTP or P2P protocol): the former T1 corresponding to signaling
packets, hence receiving hosts, the latter T2 to actual data packets and hence senders. Host A from
Figure 3 is in T1. T3–T5 include midsize packets, related to file requests and information exchange on
chunks. T4 and especially T5 show low values of entropy on those midsize packets—often a sign of (old)
P2P protocols or games (fixed medium-sized packets). This is confirmed by port analysis: classical port
numbers (for instance, as collected in Akerman [35]) are associated with P2P that do not use dynamic
port numbers, e.g. 1214 for Kazaa, 1337 for WASTE, 6346 and 6347 for Gnutella. Clusters T6 and T7

contain hosts connected to a large number of peers with fixed ports. Cluster T7 groups hosts using P2P
protocols without dynamic ports, while in T6 hosts display intense Ping and/or DNS traffic; many of
those are related to anomalies [34]. In clusters T, Ping traffic can be found because ICMP packets do
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Figure 5. Clusters C1, S1 and S3 displayed in projected space on features (i), (ii) and (iii) (only).
Each dot is one host of the given cluster. The non-convex and intricate shapes of the clusters found
justify the use of the MST-based clustering method. A first point is that each cluster is spread over

a large part of the space, with some overlapping between them: a simple segmentation in this
space would not separate them. Also, in this projected 3D space, clusters S1 and S3 (both

associated with servers, as discussed in Section 5.3) are different in that hosts in S1 often have a
high fiii with a low fiii: this indicates that hosts in S1 are communicating with many peers using a
single type of service (just a few src ports) but aim at many different dst ports. For hosts of S3,

which behave also as servers, the number of src ports fii is a little higher, showing a larger variety
of services. The difference between clients C1 and servers is mostly in the number of src ports fii

uses: this feature is close to 1, indicating that there is roughly one flow for each peer
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not use ports (it only adds one to the number of ports). Most of these are probably anomalies (some
Ping floods for T1 and T4, many Ping scans or results of spoofed flooding for T6); another explanation
could be experiments with radar and traceroute, considering the academic nature of the network on the
Japanese side.

Clusters S and C gather hosts whose dominant behavior is sender or client of HTTP, respectively
sending ACK or requests. S1–S5 are popular servers, with many peers. S6–S10 communicate with a lower
number of IPs. Accordingly, C1–C3 are clients that connect to many different servers, which can be
explained, for example, by web surfing, while C4–C7 connect to fewer servers, and probably seek precise
information. Cluster C3 is more peculiar in that it comprises much SYN, Ping and DNS traffic that is
analyzed as activities from viruses and worms, or netscans. This corresponds to an anomaly cluster, and
C7 seems to be in the same category.

Clusters P contain many hosts doing P2P in a hidden manner [36], with ports that dynamically vary in
the high number range. Typical P2P traffic is not as common on this transpacific link as it might be on
other networks as, first, many P2P applications avoid linking peers with a high RTT (the case for this
backbone link), and, secondly, the differences in language and in popularity of the various P2P
protocols between Japan and the USA limit P2P communications on this link. Still, P1 matches the
typical behavior of leechers connecting to many peers and requesting chunks or sending acknowl-
edgements, hence using many small and mid-size packets. P2P exchanges are often performed as
background activity, and this explains why many hosts in P1 display a mix of activities, for instance
being web clients at the same time. Host B from Figure 3 is a typical example of P1 (its Ping-flood
activity would be exhibited by classification from its behavior as a receiver).

Figure 6. Features of the identified clusters. For each cluster are displayed labels given by trace
labeling, (‘No.’ is an automatic identifier output by the algorithm) and its nine features computed
from the traces. For each feature, the means and variances computed over all the hosts belonging
to this particular cluster are graphically displayed on a scale from 0 (left) to 1 (right); the means

are the thick vertical bars and variances are shown by the gray areas around the means. Finally, the
number of host (#Hosts) in each cluster is provided in the last column
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The above discussion is intended to illustrate that the host MST-based clustering procedure offers a rich
and fine classification of host behaviors, which would be finer than that provided by a simple
port-based classifier. For instance, HTTP traffic is split into different S or T clusters, identifying
significant differences in the usage of the same protocol in real traffic. The same holds for hosts doing
P2P or with a mixture of traffic. Several clusters are often associated with a kind of transport-level
behavior, and they differ one from another because of the functional or social behavior of the host
(server vs. client, one-to-one vs many-to-one connections, etc.). Finally, our finding is that, in a
longitudinal study of the traffic, the classes are quite stable over several weeks. The recommendation
would be to update the classification every couple of months or so. Only in case of anomaly outbreaks
(e.g. a new major worm or virus), or over a timeframe of several months would the clusters change,
as the usages and applications on the Internet change.

5.4 Cross-validation with other automated classifiers

To better understand the benefits of the proposed classification method, a comparison with known
classification methods is done in the manner of cross-validation of the results.

Cross-validation with a port-based classifier
Instead of the labeling by a network expert combining a study of ports, some heuristic rules and an
anomaly detection step, one could use a classical port-based classifier, known to be failing in many
cases but still used as a simple, admitted method that is sufficient for legacy traffic [1]. Still, one
heuristic rule is added to port classification: the ratio of SYN flags in flows is used to detect SYN floods
(this is made necessary by the large number of SYN flooding anomalies detected in the MAWI traces
[34]). This port-based and SYN-flag classification procedure (developed first for Dewaele et al. [34])
labels each host according to the most important class of flows that it sends (or receives). For most
hosts, a dominant class is found. However, whenever more than a single class of traffic accounting for
at least 20% of the packets sent (or received), or when the dominant class accounts for less than 50%,
the host is classified as ‘Mix’ traffic. This procedure is used here as a port-based classification of the
behavior of hosts: 250 different classes are obtained, and we discuss here the most frequently observed
as representative: HTTPr or HTTPa (respectively requests/answers), P2P, Ping, SYN, SMTP(r/a),
DNS(r/a), SSH(r/a) or Mix.

The cross-validation between the MST-based clustering approach and the port-based (plus SYN-flag)
classification procedure is reported in Table 1. The sparsity of this table provides us with a first
satisfactory conclusion: despite the fact that traffic information used in each approach is different and
independent, the match in host classification is high. This reflects the adequacy of the proposed
procedure. One can go back to the description of the identified clusters in section 5.3 and check that
the discussion about the nature of each clusters is coherent with the class given by the port-based
classification for the majority of the hosts in a given cluster. For instance, T1 is mostly requests in HTTP
and P2P, whereas T2 groups hosts that answers over HTTP. Hosts in T3 and T4 are performing P2P plus
some web browsing. The client/server distinction in clusters C and S is particularly well reflected in
Table 1 by looking at columns HTTPr/a. Clusters P, containing a high number of hosts doing P2P,
performing activities in the background at the same time as other communications, are not easily
classified from ports only as doing P2P; hence, they are spread in many other categories and only the
MST-based clustering on connection patterns identify them as such. Finally, for clusters containing hosts
associated with a high proportion of anomalies (T4, T6, C3, C6, C7), the port-based classification only
partially reflects this fact. Ping or SYN flooding is detected from time to time (thanks to the additional
SYN-flag rule) but the MST-based classifier seems to be more sensitive by isolating the anomalous hosts
from other ones displaying the same activity but the anomalies. A final comment is that there is not
a large number of hosts displaying unusual or weird behavior in the traces (e.g. when a host is doing
P2P of HTTP in addition to scans, anomalies, etc.). Almost all of them would fall into the category of
Mix traffic for this classification and this group accounts for less than 8% of the total hosts reported in
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Table 1. As some of these hosts are grouped in clusters where many anomalous behaviors were found
(clusters C6, C7 or P), the remaining hosts in the Mix category outside these specific clusters are not
numerous. All in all, if there are outliers because of weird or anomalous behavior of hosts, they are not
a major part of the traffic.

II. Cross-validation with BLINC (transport-level part) [9]. Table 2 displays a cross-validation between
the proposed procedure and the BLINC classifier on the transport-layer level (because of the absence
of payload in the traces). Let us comment on the table. Again, this table is mostly sparse if one looks
globally at the major proportions of traffic of each cluster (those in bold, consisting of more than 10%
of each class). Clusters T are often classed by BLINC into ‘Unknown’ traffic (often around half of the
hosts), despite the fact that, as already noted, hosts in these groups are mostly doing HTTP or P2P
transfers with a small number of peers. This difficulty of BLINC is due to it failing partially on
backbone links [1.10,11], and because P2P traffic in these groups is very often disguised. Clusters T1 and

Table 1. Cross-validation of the classification with port-based analysis. The classes from the
port-based classifier are in columns, while the clusters from the MST-based method are in rows. For
each cluster discussed in the text (see Section 5.3), whose labels are as used in Figure 6, the number
of hosts falling into the different classes of a port-based classifier is given in the first column (with

the identifier ‘No.’ output by the procedure). This port-based classifier identifies types of traffic
using only port numbers (or protocol ICMP for the Ping class); in the case of ‘Mix’ traffic, the rule
to decide into which class the host falls is explained in Section 5.4, paragraph I. The last column,

#Hosts, is the total number of hosts in the cluster. Hosts in clusters T have mostly simple
connections; hosts in clusters S (respectively C) are servers (respectively clients) of HTTP transfer.

Clusters P group hosts doing P2P (often hidden). Further details on these clusters are given in
Section 5.3, and further details on the cross-validation are in Section 5.4. Numbers in bold are the

most numerous components in the clusters; a general view of the cross-classification is given
mainly by these numbers: they show that the table is sparse, each cluster of the MST-based method

displaying only one or two types of traffic if identified by ports. Finally, when a network traffic
expert looks carefully at the traffic of each host, the clusters are usually more meaningful than with

simple port-based analysis

Label No. HTTPr HHTPa P2P Ping SYN SMTPr SMTPa DNSr DNSa SSHr SSHa Mix #Hosts

T1 22 6771 121 3357 427 1 3 59 55 53 46 24 41 11 637
T2 9 3 5581 364 0 0 112 0 0 0 0 8 5 6 344
T3 12 16 539 802 9 0 7 0 0 0 3 4 14 1 626
T4 38 2 197 892 250 0 6 0 0 43 2 16 16 1 591
T5 33 7 22 382 13 0 6 0 0 0 2 8 15 572
T6 24 51 21 41 622 0 0 16 133 58 2 1 7 986
T7 39 0 0 583 1 0 0 0 0 0 0 0 0 586
C1 16 6138 0 130 3 18 115 0 119 0 43 2 1003 7 875
C2 27 2271 2 215 16 0 1 1 37 0 12 0 57 2 765
C3 31 69 0 0 78 220 11 0 83 0 0 0 25 524
C4 19 2057 4 144 1 3 18 0 5 0 1 2 49 2 389
C5 18 751 0 248 0 3 49 0 1 0 17 0 151 1 566
C6 20 147 0 60 0 10 0 0 1 0 1 0 309 608
C7 21 224 0 30 0 8 2 0 0 0 3 0 193 530
S1 0 0 4648 171 0 0 1 0 0 16 0 2 340 5 383
S2 11 0 1637 65 0 0 2 0 0 0 0 3 22 1 772
S3 1 12 369 257 11 0 0 442 212 29 1 60 337 1 760
S4 3 14 221 193 6 1 0 309 14 124 0 26 47 991
S5 4 7 561 47 0 0 10 0 0 0 1 2 19 690
S6 7 0 3849 45 0 0 1 0 0 3 0 2 123 4 225
S7 8 17 3578 191 0 0 63 0 0 0 0 4 32 4 056
S8 6 0 302 33 0 0 0 116 0 37 0 1136 17 1 694
S9 13 0 455 7 0 0 0 0 0 0 0 0 3 476
S10 14 0 421 11 0 0 0 0 0 0 0 0 3 442
P1 15 719 186 523 12 44 111 272 239 38 0 29 1922 4 461
P2 34 9 5 235 0 15 5 0 1 0 0 5 251 560
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T2 contain identical traffic but for being on the receiver and servers side, respectively; BLINC identifies
correctly in T1 this mixture of WEB and P2P traffic, whereas for T2 it ends mostly in the ‘Unknown’
class. We suppose that it is the lack of bidirectionality and of payload in the traces that confuses BLINC.
This shows that our procedure is robust to the absence of such information. T3 is correctly seen by
BLINC as well as the other classifiers as a group of hosts active on P2P (with only few peers). The same
holds for server and client clusters (S and C) shown here: in many of them, the large majority of hosts
are correctly labeled by BLINC as doing WEB. Others are labeled by BLINC with a high proportion of
‘Unknown’. Note here the refinement given by the MST-based method, which provides the means to
decide whether they are servers or clients, so giving a functional-level view of the hosts. Cluster P1 of
hosts with P2P activities (with many peers) is again spread from BLINC between WEB and P2P mostly,
whereas for the hosts in P2 which are doing P2P as well, the class provided by BLINC are ‘Unknown’
or P2P. Again, this is associated with the difficulty of BLINC of labeling correctly P2P on a backbone
link. Hosts in cluster C6 are spread between WEB, ‘Unknown’ and P2P, whereas the port-based analysis

Table 2. Cross-validation of the classification with BLINC. The classes from BLINC are in columns,
while the clusters from the MST-based method are in rows. For all clusters of Figures 6 and 7

(whose labels are recalled in the first column), the percentage of hosts in the cluster falling into the
different classes of the BLINC classifier is shown. For BLINC, the class UNKN is for ‘Unknown’.

The last column, #Hosts, is the total number of hosts in the cluster. Numbers in bold are the most
numerous components in the clusters (others being always less than 10% of the hosts in this

cluster). The major comment is the sparseness of this table of cross-classification: both methods
often agree to class hosts under similar categories. However, the MST-based method seems to bring

more detail in that it breaks a given type of host (for instance, those doing mostly WEB) into
several classes according to their behavior, with only simple (often one-to-one) connections (clusters

T), or as clients (C) or servers (S) in many connections. Also, the proportion of ‘Unknown’ is
important in BLINC (because of the difficulties it has with backbone traffic). More detailed

comments are given in the text

Label WEB UNKN P2P MAIL DNS FTP SCAN CHAT STREAM #Hosts

T1 60.88 22.04 15.03 0.36 0.86 0.72 0.00 0.02 0.08 11 637
T2 7.40 89.95 1.33 0.92 0.27 0.14 0.00 0.00 0.00 6 344
T3 8.29 62.10 27.27 0.60 0.67 1.00 0.00 0.00 0.07 1 626
T4 10.98 56.94 25.58 1.01 5.06 0.43 0.00 0.00 0.14 1 591
T5 3.27 43.59 49.35 0.52 0.92 1.05 0.00 0.00 1.18 572
T6 10.41 58.04 8.52 5.99 16.72 0.00 0.00 0.32 0.00 986
T7 1.45 49.89 42.84 0.22 2.57 0.22 0.00 0.00 2.80 586
C1 90.82 1.18 3.05 2.74 2.14 0.07 0.00 0.00 0.00 7 875
C2 90.81 4.10 3.15 0.63 0.75 0.47 0.00 0.00 0.04 2 765
C3 15.59 50.61 5.67 2.83 25.10 0.20 0.00 0.00 0.00 524
C4 89.75 5.40 3.37 1.02 0.23 0.23 0.00 0.00 0.00 2 389
C5 92.39 1.52 1.85 1.05 3.19 0.00 0.00 0.00 0.00 1 566
C6 34.25 33.52 31.31 0.00 0.92 0.00 0.00 0.00 0.00 608
C7 96.30 0.00 0.34 1.18 2.19 0.00 0.00 0.00 0.00 530
S1 89.86 3.51 3.30 2.12 0.75 0.16 0.00 0.29 0.00 5 383
S2 91.74 5.25 1.93 1.03 0.00 0.06 0.00 0.00 0.00 1 772
S3 30.96 5.36 19.08 27.53 15.56 0.00 0.00 1.51 0.00 1 760
S4 26.70 18.33 7.89 32.40 12.38 0.12 0.00 2.18 0.00 991
S5 81.25 5.07 6.25 4.90 1.69 0.51 0.00 0.00 0.34 690
S6 95.02 4.03 0.58 0.20 0.13 0.05 0.00 0.00 0.00 4 225
S7 78.50 18.72 1.80 0.55 0.39 0.04 0.00 0.00 0.00 4 056
S8 27.38 56.89 1.69 10.13 3.91 0.00 0.00 0.00 0.00 1 694
S9 50.61 25.31 23.06 0.82 0.20 0.00 0.00 0.00 0.00 476
S10 63.39 24.69 6.49 5.02 0.42 0.00 0.00 0.00 0.00 442
P1 51.47 1.11 25.40 13.71 6.76 1.45 0.00 0.00 0.10 4 461
P2 1.64 54.91 37.64 0.55 0.00 4.55 0.00 0.00 0.73 560
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was analyzing them as doing a mixture of traffic. A strength of the MST-based clustering method is to
be able to distinguish in a separate trace such a group of hosts with Mix traffic, without putting it in
the same class as hosts with a simpler traffic profile (e.g. cluster C5). Finally, cluster C3 deserves a
specific comment: it was told to group hosts with anomalous traffic (SYN and Ping flooding, DNS
anomalies). With the BLINC procedure, hosts are spread over WEB, ‘Unknown’ and DNS classes; the
MST-based procedure described here adds the information that all these hosts, despite their other
activities, can be grouped as being a not so small cluster with equivalently anomalous activities. This
shows the advantage of the unsupervised nature of the method: a cluster of anomalous hosts is
identified without a priori being related either to its existence or to its characteristics.

5.5 Computation load

Computational load-wise, there are two different phases in the proposed classification procedure. First,
the extraction of the cluster itself requires the processing of a sufficiently large set of data (here, 15 min
of traffic collected over seven different days). This is the most computationally intensive phase that
remains, however, very reasonable even for the case of the MAWI backbone traffic analyzed here, and in
any case much lower as compared to the actual duration of analyzed data. All the results reported here
were computed on a standard desktop computer (with a G5 processor). Extraction of the features
describing the connection patterns were taking between 2 and 3 min per trace of 15 min duration. For
instance, if one wants to use 3 months of traffic (with 15 min per day) as the basic dataset for finding
clusters, this part of the method should take less than 2 h of computation. The computation of the MST
and the clustering were then done from these in a couple of minutes. The number of clusters obtained
and kept were up to 200; this number has to be decided mostly depending on the amount of time an expert
will then spend on traces to analyze them. The second step is the classification of new traffic: it amounts
to computing the nine features for each host within a chosen analysis window, followed by calculation
of the distances to clusters. This phase therefore shows a very low computational cost and can hence be
implemented in real time, i.e. almost immediately at the end of the analyzing window: as stated, this takes
2–3 min to compute, once a 15 min traffic trace is acquired, and the classification is immediate. These
figures are given for typical traces in an MAWI dataset for 2008; there are usually between 3 · 105 and
6 · 105 different IP addresses in a trace, 5 · 105 and 1 · 106 different flows, and around 400 MB of trace
without payload (which would be larger than 10 GB with payloads). The computational cost of the
proposed method appears to be reasonable enough for applicability in an operational context.

6. CONCLUSION

The key points of the present contributions are threefold. First, an original 9D feature vector has been
defined and shown to characterize accurately and efficiently traffic at the host behavior. It is backbone
traffic classification oriented: it accommodates large datasets, and avoids the use of payload and
bidirectionality. The dimension of this feature vector has been kept low (9D) thanks to the meaning-
fulness and richness of the information each feature conveys: it probes the host network connectivity,
connection dispersion and traffic content. Second, classification is based on a minimum spanning tree
approach: it is unsupervised and hence avoids recourse to training sets and ground truth knowledge;
it assumes a priori neither a fixed number of clusters, nor the convexity of their shapes; it is
data-adaptive—notably, it accommodates new classes of traffic not observed earlier. Third, its feasibility
and performance are assessed on a 1-year real traffic dataset collected over a transpacific backbone
(MAWI dataset). Cross-validation against classical port-based classifiers or transport layer-based
procedures proposed in the literature enables assessment of the relevance and potential of the
classification procedure proposed here. This contribution has hence shown that combining this relevant
9D feature vector, characterizing the connection patterns of a host, to the MST clustering technique
yields an unsupervised and meaningful classification of host behaviors.
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This approach will require further development for the rationale and the automation of parameter
tuning. Still the parameters to tune remain limited in number and the global performance shows little
sensitivity to their precise values. As compared to any rule-based classifier, the proposed host
MST-based clustering procedure thus requires little parameter tuning. Results presented here on the
different behaviors of hosts have been obtained on traffic of the MAWI dataset in 2008; when doing
preliminary analyses of other years of the MAWI dataset, the reported classes appear to be mostly
stable with time (up to significant events on the Internet such as the Sasser worm outbreak of
2004–2005, as already noted in the longitudinal analysis of Borgnat et al. [13]).

Characterization of the hosts was here developed mostly using their behavior as a source of traffic.
As already mentioned, another point of view is to study them as destination of traffic (computing the
connection features from packets having their IP as IPdst). Similar results are obtained in our study of
this question: hosts are usually seen as having the same role, even though by mostly seeing traffic in
the reverse direction of connections. However, specific results were not shown in that respect because
by itself it could not provide further insight. More than merely showing similar results in the other
direction, the important work to do is to jointly use both points of view. It would be of utmost benefit
to understand the behavior of a given host in finer detail. However, such an automated fusion of
information obtained on a host as source or destination is not conducted here as it would be a new
research question per se and part of a larger task. Obviously, the joint use of both the proposed host
MST-based clustering and other procedures such as the port-based and SYN-flag procedure (or the
BLINC methodology) would also take advantage of the different nature of the analyzed information,
in a collaborative manner, to provide practitioners with a clear yet automated view of the content of
the traffic at the host level.
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