
CCDM: Central Controller-based Device Management Architecture and Method
to Split Management Scripts

Akihiro Sugiyama, Hideya Ochiai, and Hiroshi Esaki
The University of Tokyo

Graduate School of Information Science and Technology
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan

sugi@hongo.wide.ad.jp

Abstract

This paper presents CCDM, a new architecture for man-
agement of devices, which collect environmental informa-
tion and give effects to the environment. CCDM provides
easy management of devices and distributed execution of
gateways for sudden network disruptions. We separate the
management system to the control plane and the data plane.
CCDM’s easy management is achieved by a logically cen-
tralized controller. The controller handles the control plane.
All the policy of device management and network informa-
tion are stored to 2 kinds of scripts; service scripts and
resource scripts. The controller transforms the policy to
work distributedly at each gateway. Data plane is the data
communication between devices and gateways. Gateways,
which operate devices directly, works at distributed manner
based on the policy on the controller.

1. Introduction

More and more embedded devices, (i.e., sensors and ac-
tuators, have been connected to the Internet via gateways.
Embedded devices have their own unique protocols. When
one wants to get information from a sensor and operate an
actuator by the information, gateways need to take a role in
translating a device specific protocol to another. The role is
not just in protocol translation; gateways provide data pro-
cessing and routing for devices. There being many devices
and gateways, distributed operation is desirable because of
the durability to the network disruptions or traffic reduc-
tion. However, this distributed situation makes it difficult to
provide easy management way because a user must know
all the network information, device protocols and device-to-
gateway relations and decide where to allocate and execute
applications.

We propose Central Controller-based Device Manage-

ment(CCDM) to tackle on those problems. We design
the control plane as centralized and the data plane as dis-
tributed. The central controller-based architecture allows
managers to operate devices through a simple interface
and applications to be executed in a distributed manner.
CCDM provides command set such as arithmetic opera-
tions, branch, loop and so on for system operators, which
are necessary in data processing. Additional command set
for device abstraction and communication between gate-
ways is prepared, too.

We adopted the controller-based architecture by
Ethane[4], OpenFlow[1] and Cleanslate 4D[2]. Ethane
makes enterprise networks more manageable and more se-
cure by a controller-based approach. A controller in Ethane
has the global network policy to govern enterprise net-
works. OpenFlow also adopts controller-based approach. It
aims to provide easy way for network researchers to run ex-
perimental protocols on campus networks. Active network
[6, 7] looks alike from the perspective of programmable
networks. A mobile agent[3] migrates its software and
data from one computer to another autonomously and
keeps its execution. Our point is in the adoption fo the
controller-base architecture to device management.

Though CCDM’s controller-based architecture is similar
to architectures of these research, our policy description lan-
guages is completely different from them because our target
is in the management of devices. The way to describe man-
agement policies in CCDM is based on [5]. The high level
script language provides command set suitable for device
management.

2. Controller-based System

2.1. System Requirement

We assume that various kind of devices are installed
in buildings or campus networks. The management sys-

Figure 1. Overview of CCDM System

tem must satisfy the following 5 requirements. (1)pro-
tocol translation: Devices, which have different protocols
from device to device, must communicate with each other.
That is, protocol translation should be carried out. (2)data
processing: Data aggregation, conditional branch and any
data processing must be programmable. (3)communication
chain: From devices to devices procedure must be done in
distributed environment. (4)easy management: To enable
users to deploy services without considering underlying net-
work and device protocols. (5)fault tolerance and traffic bal-
ancing: Data plane must avoid single point of failure and
traffic congestion.

2.2. CCDM Architecture

Figure 1 shows the architecture of CCDM. CCDM has
3 components; a CCDM controller, CCDM gateways and
devices.

A CCDM controller is a logically-centralized server. The
controller has service programs, which decide from which
device data come from and how to manage it, and resource
information, which is consisted of IP address of gateways,
device communication protocols, device-to-gateway bind-
ing and so on. The controller has two functions. One is
to generate execution scripts for each CCDM gateway from
the resource information and service program. One is to
deploy those execution scripts to each CCDM gateway.

CCDM gateways are the gateways of each device. All
devices are bound to gateways. It is not a controller but
a gateway that operates devices in CCDM. Gateways work
under the direction of the controller with execution scripts.
Execution scripts shows the operation policy of each gate-
way. They derive from service programs and resource in-
formation stored at the controller. After deployment of ex-
ecution scripts, a gateway gets data from sensors, calculate
it and give it to actuators.

Devices are set of sensors and actuators. They only
throw their data to a gateway and receive data from it ac-
cording to their own protocols.

1 <progn>
2 <chunk>
3 <INPUT from="WeatherSensor"/>
4 <post channel="A" name="INPUT"/>
5 </chunk>
6

7 <chunk>
8 <catch channel="A" name="temperature"/>
9 <if>

10 <lt>
11 <getq name="temperature"/>
12 <int>20</int>
13 </lt>
14 <progn>
15 <OUTPUT to="Buzzer">
16 <ARG>
17 <byte>1</byte>
18 </ARG>
19 </OUTPUT>
20 </progn>
21 </if>
22 </chunk>
23 </progn>

Figure 2. Sample Service Script

2.3. Policy Description Languages

CCDM defines 3 scripts; service scripts, resource scripts
and execution scripts. All the scripts are in the form of XML
languages, but they have different functions.

Service scripts are the programming language of CCDM.
A user writes an application to a service script. Applications
in CCDM include alert notification, data delivery, data ag-
gregation, and so on. Command set of service scripts are
arithmetic operations, logical operations, branch, loop, ab-
stract device communication, etc. The command set pro-
vide the appropriate way for users to manage devices.

Resource scripts store the information of the network; IP
address of gateways, device protocols, etc. Resource scripts
are defined to complement service scripts in compilation of
them. It is because service scripts cover up the underlying
network information, device specific communication pro-
tocols and device-to-gateway bindings: the service scripts
need to complement these detailed information.

Execution scripts are created by the compilation of ser-
vice scripts and resource scripts. Execution scripts are the
instruction for CCDM gateways. An execution script works
at each CCDM gateway.

2.4. Programming by Service Scripts

Consider, for example, Bob wants to sound a buzzer
when the room temperature becomes above 20 degree. Bob
writes the program to a service script. Figure 2 shows the
example. The program is divided into 2 parts by the chunk
commands in the line 2 and 7. Generally a chunk can con-
tain stateful data processing. The program gets data from
a WeatherSensor by INPUT command in the line 4. IN-

1 <host name="CCDM_A">
2 <ip>192.168.1.2</ip>
3 <port>
4 <begin>10000</begin>
5 <end>20000</end>
6 </port>
7 <devicelist>
8 <device name="WeatherSensor" func="INPUT">
9 <progn>

10 [Device Specific Protocol]
11 </progn>
12 </device>
13 </devicelist>
14 </host>

Figure 3. Sample Resource Script

Figure 4. Mechanism of CCDM Compilation

PUT/OUTPUT commands provide generalized device com-
munication API. In the line 4, the data is sent to the channel
named A by post command. Post/catch commands enable
a program to exchange data between chunks. A channels is
the communication channel between chunks.

The other chunk receives the data from the first chunk by
channel A in the line 8. It checks whether the data is above
20 or not in the line 9-20. If the data is over 20, the buzzer
makes a sound by the OUTPUT command in the line 17. If
not, it does nothing.

2.5. CCDM Compilation of Service Script
and Resource Script

Figure 4 shows the mechanism of the compilation of
scripts.

A service script is divided into several parts. The unit of
the partition is a chunk. The controller allocates each chunk
to gateway. The allocation mechanism is based on device-
to-gateway bindings. Because a device is always bound to a
gateway, a chunk with a device can be bound to the gateway
which is bound to the device. A chunk with no relation to

Figure 5. Experimental Network

any devices can be allocated to any gateways.
INPUT/OUTPUT need to be replaced because they only

represent the generalized device interface. They are re-
placed to the device specific protocols described at the re-
source script at Figure 3.

Post/catch are replaced to UDP datagram socket. The
destination IP address and port are decided by their channel
and resource information.

3. Experiment and Analysis

3.1. Experimental Network Environment

We implemented CCDM prototype. To test and evaluate
the prototype, we built the experimental network Figure 5 .
It is based on the real network at the Bld 2 of Engineering
Department, The University of Tokyo.

We prepared 7 test case applications. The applica-
tions are (1)Weather Display, (2)Multicast Data Delivery,
(3)Weather Threshold Notification, (4)Data Aggregation,
(5)Several Source Data Aggregation, (6)Largest Value Up-
date Notification and (7)Updated Data Delivery.

3.2. Network Management Cost

Figure 6 shows the code size of the test case applica-
tions. The summation of the code size of 7 applications
with CCDM system is 1074. On the other hand, one without
CCDM system is 4539. The code size becomes 23.7% with
CCDM system. It shows that programming with CCDM
make it easy to deploy new application.

3.3. Durability to Network Failures

We assumed that 3 points of the network at Figure 5 were
disconnected suddenly.

Table 1 shows the continuity of the Weather Display Ser-
vice when each 3 point of Figure 5 was disconnected. Even

Figure 6. Comparison of Code Size

Table 1. continuity of the service in disruption

1© 2© 3©
With CCDM System © × ©
Without CCDM System × × ©

if gateways lost their connectivity to the controller, they re-
main working. It is because the control plane and the data
plane is separated at CCDM system.

3.4. Time of Compilation and Deployment
of Service Scripts

Figure 7 shows time to generate a execution script from
the compilation of service scripts and resource scripts. This
result shows that the controller compiles scripts and send
them to gateways within 2 seconds. We think that 2 seconds
waiting time is not so long for new application deployment.

4. Conclusion

We implemented the CCDM prototype and evaluated it
at the experimental network. We confirmed users can pro-
gram it on a single script with generalized device access in-
terface. Programming with CCDM reduced the code size by
76.3 percent in our test case applications. It is because users
program applications without knowing device specific pro-
tocols and underlying network information; they are stored
at resource scripts. Contrary to the programming with a
centralized manner, CCDM enables the distributed execu-
tion of applications. Our prototype deployment of CCDM
showed that the centralized controller is not the single point
of failures because of the separation of the control plane

Figure 7. Time of Compilation and Deploy-
ment of Service Scripts

and the data plane. We believe that CCDM’s controller-
based architecture and the script languages are suitable for
the device management.

References

[1] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown,
and S. Shenker. Ethane: Taking Control of the Enterprise.
In SIGCOMM ’07: Proceedings of the 2007 conference on
Applications, technologies, architectures, and protocols for
computer communications, pages 1–12, Kyoto, Japan, 2007.
ACM.

[2] A. Greenberg, G. Hjalmtysson, D. Maltz, A. Myers, J. Rex-
ford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A Clean Slate
4D Approach to Network Control and Management. ACM
SIGCOMM Computer Communication Review, 35(5):41–54,
2005.

[3] D. Lange and M. Oshima. Seven good reasons for mobile
agents. Communications of the ACM, 42(3):88–89, 1999.

[4] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Com-
put Commun. Rev, 38(2):69–74, 2008.

[5] H. Ochiai and H. Esaki. Networked GPIO Control by High-
Level Languages and Protocol Translator. IPSJ Journal,
49(10):3451–3461, 10 2008.

[6] D. Tennenhouse, J. Smith, W. Sincoskie, D. Wetherall, and
G. Minden. A Survey of Active Network Research. Commu-
nications Magazine IEEE, 35(1):80–86, 1997.

[7] D. Wetherall and D. Tennenhouse. Towards an Active
Network Architecture. Computer Communication Review,
26(2):5–18, 1996.

