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Abstract—The detection of anomalies in network traffic is a
crucial issue affecting the security of Internet users. A statistical
network anomaly detection algorithm is a promising way of
detecting such anomalies, however, it has to be given appropriate
parameters for accurate detection and identification. In general,
it is very difficult to obtain appropriate parameter settings a
priori, because network traffic is not stable in time or space. Thus,
although many anomaly detection methods have been proposed,
there has been little discussion about their parameter tunings.

In this paper, we investigate an automatic and dynamic pa-
rameter tuning of a statistical network traffic anomaly detection
method. In particular, we clarify whether one can consistently use
the best parameter fixed for a certain instance; this choice clearly
depends on the macroscopic and dynamic behavior of Internet
traffic anomalies. We ascertain the appropriate learning period
for setting a parameter of an anomaly detection algorithm based
on a sketch and multi-scale gamma-function model by using real
network traces measured in a trans-Pacific link over a period of
six months.

The main results of our study are as follows: (1) Without
learning, the best parameter varies day by day. (2) With a
longer learning period, the best parameter setting is affected by
significant data during the learning period. (3) The appropriate
period of the learning is about 3 days. (4) The performance
degradation from introducing dynamic parameter tuning is 17%
in the best case.

Index Terms—statistical network anomaly detection, parame-
ter tuning

I. INTRODUCTION

Nowadays, Internet users are exposed to many menaces
like viruses, worms, and DDoS. To make networks secure
for users, these menaces must be accurately detected in real-
time. Many network traffic anomaly detection methods have
been proposed, and they are broadly categorized into two
approaches. One is the signature-based approach [1], which
inspects fingerprints of packet payloads and compares them
with ones in an anomaly database. This approach has high
identification accuracy, but it has to have a set of corresponding
signatures a priori. The other approach is based on statistical
models [2]–[10]. It defines a network anomaly as a deviation
from a referential statistical behavior of network traffic. The
parameter setting of the statistical model directly affects to
the accuracy of the detection and identification. Generally,
however, it is very difficult to choose an appropriate parameter
setting in advance, because the dynamics of macroscopic
Internet traffic anomalies are highly variable depending on the

time and location to be measured. For example, an outbreak
of a new virus (zero-day attack) is a common situation in the
current Internet. The parameter tuning is a difficult task, and
little attention has been paid to it [11]. We need to obtain an
appropriate parameter setting dynamically and automatically
to be able to deploy algorithms that will be capable of accurate
and real-time detection. Furthermore, automatic and dynamic
parameter tuning is essential not only for detecting anomalies
in the real world but also for comparing anomaly detection
methods; for a fair comparison, we need both a parameter
optimization and a performance measurement of each method
using the same dataset.

In this paper, we discuss an automatic and dynamic param-
eter tuning of a statistical network traffic anomaly detection
algorithm. In particular, we focus on the appropriate learning
period for the best parameter setting. Intuitively, the learning
period has a tradeoff: (a) A shorter learning period leads
to low accuracy because there are fewer data points to get
proper statistics. (b) A longer learning period will not capture
abrupt changes in the macroscopic dynamics of network
traffic anomalies. We investigate this tradeoff by using real
traffic traces measured at a trans-Pacific link over the course
of six months. Our contribution is to show the importance
of automatic parameter tuning for statistical network traffic
anomaly detection methods in the real world.

II. DATASET AND ANOMALY DETECTION ALGORITHM

A. Anomaly detection algorithm based on sketch and multi-
scale gamma-function model

We used an anomaly detection algorithm based on sketch
and the multi-scale gamma-function model [2]. In this paper,
we define “an event” as a set of packets which have the same
source IP address, that is, a set of packets from the same host.
We empirically focus on the events which have more than
1000 packets to obtain proper statistics for event classification
(section III-A). The anomaly detection procedure has three
steps.
(1) Sketch: traffic is divided into events with a hash function

of a quasi-huge hash table created from several hash
functions of small hash tables [8].

(2) Multi-scale gamma-function model: each event’s his-
togram of the number of packets arriving in a certain



TABLE I
CATEGORIES AND EXAMPLES OF HEURISTICS.

category explanation example of heuristics

Attack The host sends malicious packets If the ratio of SYN flagged packets is more than 20%, then the host is regarded as “an
attacker of SYN flooding attack” and the event is classified into Attack category

Victim The host receives malicious packets If the ratio of SYN/ACK flagged packets is more than 20%, then the host is regarded
be “a victim of SYN flooding attack” and the event is classified into Victim category

Warning The host is legitimate, but it can be malicious in
some cases

If the ratio of HTTP request packets is more than 50% then the host is regarded as “a
sender of many HTTP requests” and the event is classified into Warning category

OK The host is legitimate If the ratio of packets with source port 80 is more than 50%, then the host is regarded
as “a web server” and the event is classified into OK category

Special The host is a server or client of a specific application
such as DNS and FTP

If the ratio of packets with source port 53 is more than 50%, then the host is regarded
as “a DNS server” and the event is classified into Special category

Unknown The host is not classified into any above categories If the host cannot be classified into any above categories, then the event is classified
into Unknown category

timescale is approximated as a gamma distribution with
several timescale. The gamma distribution has two pa-
rameters: α determines the shape of histogram, and β
the scale. α is helpful for detecting low-intensity hidden
anomalies.

(3) Anomaly identification: The αs of every event are com-
pared each other, and events which have outlier parame-
ters are anomalies; the same goes for the βs. For example,
focusing an event’s α, if |α − E[α]| > θα, the event
is judged to be an anomaly. Here, E[α] stands for the
average α among the events in the data and θα is the
threshold for α.

Although the algorithm requires several parameters, we will
concentrate on a main parameter θα because the change in the
shape parameter clarifies low-intensity anomalies.

B. MAWI dataset

We performed our evaluation by using real traffic data
taken from MAWI traffic repository [12]. The traffic traces
were measured at a trans-Pacific link between Japan and the
U.S. and consisted of 15 min. pcap traces (at 2 p.m. JST)
from 2001. The payloads of the packets were removed and
both IP addresses were anonymized; the prefix structure was
preserved.

We chose traces from Oct. 2005 to Apr. 2006. The number
and volume of traces were 207 and 113GB, respectively. Table
II briefly describes the dataset. Note that the link was often
congested during the observation period. These traces are not
consecutive (15 min. for a day), but the measurement point
and the start time (2 p.m.) of all traces were the same. Hence,
these traces are good enough for investigating the algorithm’s
ability to follow the macroscopic changes in traffic anomalies.

TABLE II
BRIEF DESCRIPTION OF MAWI DATASET.

date direction link packet rate bit rate
From Oct. 2005 Japan to US 18Mbps 4.27 Kpps 12.1 Mbps

to Apr. 2006 US to Japan 18Mbps 4.50 Kpps 15.0 Mbps

III. METHODOLOGY

A. Event classification

We define the optimal parameter (optimal threshold alpha)
θopt

α as the parameter that leads to the best detection perfor-
mance. The performance a(θα) is expressed as a(θα) = A/T
where A and T are the number of anomalies and total number
of events detected with the threshold θα. In other words,
1− a(θα) is the false-negative rate and θopt

α minimizes it. Al-
though this metric is different from the common performance
metric (the false-positive rate), it is proper for deciding θopt

α .
For the decision on θopt

α , we need to classify detected events;
for computing a(θα), we must identify which events are
anomalous or not. Since no classification method is perfect, we
must consider the worst case of classification (all unclassified
events are anomalies) and the false-negative rate is a more
robust metric for unclassified events.

We classified events into six categories (Attack, Victim,
Warning, OK, Special, and Unknown) with our heuristics
based on port number, TCP flag, and communication network
structure. Table I shows an explanation of the categories and
examples of heuristics. Here, we define the Anomaly category
as including both Attack and Victim categories. Fig.1 shows
the classification results on our dataset: (a) a breakdown by
category and (b) a detailed breakdown of the Attack category.
In this figure, there are aggregated statistics from Oct. 2005
to Apr. 2006. For example, Attack events account for 8.9%,
and the most dominant attack is “scanning with SYN packets”
(SYN scan in Fig.1(b)) which accounts for 31.2% of Attack
events. Note that the breakdown varies on a daily level. With
these data, we will identify whether a detected event is a true
anomaly or not.

B. Learning period

Learning is a method to obtain a parameter for appro-
priate detection on a certain day by considering past data.
The number of events per day might be too small to give
proper statistics to obtain θopt

α and high anomaly detection
performance. Hence, we need to process data periods lasting
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Fig. 1. Event breakdown of MAWI dataset (from Oct. 2005 to Apr. 2006):
(a) all events, (b) attack events.

several days. The number of days of data for deciding θopt
α is

called the “learning period τ”. Obviously, τ has a tradeoff:
• when τ is shorter, one cannot decide θopt

α because there
are few data points to obtain proper statistics.

• when τ is longer, θopt
α is not suitable because a longer τ

leads to an unexpected delay for following macroscopic
changes of anomalies.

Thus, we need to find an appropriate value for τ .

C. Optimal parameter setting

The procedure to determine θopt
α is as follows.

1) The default optimal parameter is θoptdef
α = 1.7.

2) Run the detection procedure over past τ days data by
changing θα (increase by 0.1 from 0.0) in order to find
a (local) maximum. Count A and T and compute a(θα).
θopt

α is uniquely determined to be θopt
α = arg max a(θα)

that satisfies a(θopt
α −0.1) < a(θopt

α ) and a(θopt
α +0.1) <

a(θopt
α ).

3) If there is no θα satisfying the above condition, θopt
α of

the previous day is used.
Fig.2 shows an example of the output by the above procedure.
The x-axis is θα, and the y-axis is the ratio of detected events.
Fig.2(a) and (b) are the results on Dec. 6th 2005 for 1 day and
28 days of learning, respectively. The performance of a(θα)
is the ratio of Attack (red) and Victim (blue) events over the
total events.

• θopt
α in Fig.2(a) is around 4.4, because a(θopt

α ) = 100%.
However, these parameters are not reasonable; the num-
ber of detected events is too small (only one event
is detected and there are many missed events). Hence,
choosing a local maximum is better for keeping a rea-
sonable number of detected events; Here, we have one
at θα = 1.8, and four anomaly events are detected.
Conversely, only one anomaly event is detected when
θα > 2.0.

• On the other hand, θα = 2.4 in Fig.2(b) is optimal for our
heuristics. Thus, a large amount of learning data makes
it easier to decide on a good θopt

α .
In addition, we found that the typical time-series pattern of
events detected by using a tuned α is continuous; Fig.3(a)
shows an example. On the other hand, there are only a few
spiky traffic patterns (e.g., in Fig.3(b)); a tuned β would detect
more.
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Fig. 2. Example of determining the optimal parameter θopt
α : (a) τ = 1-day

learning period, (b) τ = 28-day learning period.
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Fig. 3. Example of anomaly traffic detected by tuned alpha: (a) typical traffic,
(b) untypical traffic. Both traffic are judged as “SYN flooding attack”.

IV. RESULTS

A. Changes in optimal parameter

Fig.4 shows the dependency of θopt
α on date for fixed

learning periods. The x-axes in Fig.4(a), (b) and (c) are date
(from Nov. 2005 to Apr. 2006) and the y-axes are θopt

α for each
date. The x-axes in Fig.4(d), (e) and (f) are date, and the y-axes
are the number of detected events, with θopt

α determined from
the above figures (red: anomaly events, green: normal events).
Fig.4(a) and (d) show the results for no parameter learning;
each θopt

α on a certain day yields to the best performance of
the day. Fig.4(b) and (e) show the results for τ = 3-day of
learning, and Fig.4(c) and (f) show the results for τ = 28-day
of learning.

Obviously, θopt
α depends on τ ; θopt

α with a shorter τ is
scattered, whereas θopt

α with a longer τ is high and stable.
One plausible reason for this result is that data for a specific
day (or specific days) have a strong influence on θopt

α . Thus,
since the learning with a longer τ is affected by specific data
for a long period, it produces a stable θopt

α as long as learning
of past τ days includes the data. In addition, θopt

α with a longer
τ is inaccurate, because it degrades the performance a(θopt

α )
(Fig.4(f)). The reason is that one cannot follow the changes in
anomaly traffic with a longer τ . Thus, learning with a longer
τ is inappropriate for obtaining a suitable θopt

α for practical
anomaly detection.

B. Variable learning period

We investigated the strong influence from specific data by
computing the best performance with a variable τ . Fig.5 shows
the result; the x-axis in Fig.5(a) is date, and the y-axis is τ ′,
which leads to the best performance for the past τ days of
detection, i.e., τ ′ = arg maxτ a(θopt

α ). The x-axis in Fig.5(b)



 1

 10

 100

 1000

11/01/05 12/01/05 01/01/06 02/01/06 03/01/06 04/01/06 05/01/06

Anomaly
Normal

#
 o
f 
d
e
te
c
te
d
 e
v
e
n
ts

date [month/day/year]

(d) no learning

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

11/01/05 12/01/05 01/01/06 02/01/06 03/01/06 04/01/06 05/01/06

o
p
ti
m
a
l 
p
a
ra
m
e
te
r

(a) no learning

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

11/01/05 12/01/05 01/01/06 02/01/06 03/01/06 04/01/06 05/01/06

(b) past 3 days

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

11/01/05 12/01/05 01/01/06 02/01/06 03/01/06 04/01/06 05/01/06

(c) past 28 days

 1

 10

 100

 1000

11/01/05 12/01/05 01/01/06 02/01/06 03/01/06 04/01/06 05/01/06

Anomaly
Normal(e) past 3 days

date [month/day/year]

 1

 10

 100

 1000

11/01/05 12/01/05 01/01/06 02/01/06 03/01/06 04/01/06 05/01/06

Anomaly
Normal(f) past 28 days

date [month/day/year]

Fig. 4. Changes in θopt
α : (a) and (d) no learning, (b) and (e) past τ = 3-day learning, (c) and (f) past τ = 28-day learning.

is date and the y-axis is the θopt
α for the best τ ′. Fig.5(a)

has several lines, which means that some data have strong
influences on θopt

α , and the learnings of τ ′ days consider those
data. To investigate the reason for this effect, let us consider
points A and B which are two of the roots of these lines.
A: The data for 2005-12-09 (point A) give θopt

α = 2.6.
With this threshold, the detected events on the data are 5
Attack1 and 1 P2P events.

B: The combination of the data from the Feb. 18th and 19th
2006 sets θopt

α = 2.5. This threshold produces 3 Attack2,
4 Warning, and 1 Unknown events.

Since such data have a strong effect on a(θopt
α ), a variable

τ is inappropriate for following the macroscopic changes in
Internet traffic. In addition, the changes in θopt

α for variable τ
(Fig.5(b)) are almost same as those for τ = 28-day (Fig.4(f)),
and the performance of a variable τ ′ is lower than that of τ =
3. Thus, τ must be appropriately fixed. Another way to avoid
the influence of specific data is putting moving weights on the
past data. However, this method needs a number of parameters
(e.g., we need to know how to determine the weights).

C. Optimal learning period

We applied our automatic and dynamic parameter tuning
method to the a real dataset of traces from Nov. 2005 to Apr.
2006. Fig.6 shows the dependency of a(θopt

α ) on τ . The x-
axis is τ (from 1 day to 28 days), the left-hand y-axis is the
average number of events detected with θopt

α , and the right-
hand y-axis is the average detection rate. The red and green

1port scans of Dasher.B virus, from source port 6000 to destination port
1025

22 scans from source port 6000 to destination port 8080 on 18th, and 1
scan from 1663 to 1434 on 19th
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Fig. 5. Changes in θopt
α with variable learning period

lines show respectively the average number of anomaly events
and normal events detected in a day, and the yellow line shows
the average performance. Each line has its standard error.

• The red and green lines show that the number of detected
events has a dependency on τ ; a longer τ reduces the
number of events detected in a day. This is because a
longer τ results in high θopt

α (Fig.4).
• The yellow line shows that the average a(θopt

α ) depends
on τ ; a shorter τ (1 or 2 days) leads to worse perfor-
mance. The reason is that a shorter τ cannot yield enough



amounts of datasets for accurately determining θopt
α .

The figure clearly shows that a τ of 3 days is the most appro-
priate, because a(θopt

α ) is larger and the number of detected
anomaly events is larger. In addition, we have to compare the
performance a(θopt

α ) with the percentage of Attack events in
the dataset: 8.9% (Fig.1). Any increase in a(θopt

α ) with respect
to the percentage will be a sign of the algorithm’s efficacy.
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D. Performance evaluation

Fig.7 illustrates the effect from introducing the parameter
learning on performance. In Fig.7(a), the x-axis is date and the
y-axis is the number of detected anomaly events. The y-axis in
Fig.7(b) is the ratio of the number of detected anomaly events
to that of all detected events in each day. In both figures, the
gray lines are the results of the best (no learning) parameter,
as mentioned in IV-A. The red lines are the results of θopt

α

determined with a learning period of τ = 3days.
Fig.7(b) shows that the learning generally degrades the

performance, but the degradation is not critical to a practical
detection. The parameter learning degrades the average per-
formance by only 16.6%, and its standard error is 9.2%. Also,
the learning reduces the number of detected anomaly events
(Fig.7(a)). With the best parameter, the average number of
detected anomaly events is 10.8 ± 1.3. On the other hand, with
learning, it is 5.4 ± 0.9; thus, learning reduces the number of
detected events by about 50%.

V. CONCLUDING REMARKS

A. Discussion

High variability of the optimal parameter: Our results
illustrate the importance of a dynamic parameter tuning of
statistical anomaly detection algorithms for deploying them
in the real Internet. An inappropriate parameter significantly
degrades performance, because the ratio of the number of
anomaly events to that of total events is not constant relative
to the value of the parameter. In addition, even if we set an
optimal parameter, we cannot use the same value consistently,
because the optimal parameter is not constant (Fig.4). This
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Fig. 7. Performance degradation caused by introducing parameter learning:
(a) the number of detected anomaly events, (b) the ratio of detected anomaly
events.

feature is not specific to our method; since Internet traffic has
a tradeoff, other methods also likely require parameter tuning
at the daily level in order to follow the macroscopic behavior
of network anomalies.

Advantage of using the multi-scale gamma-function
model: Fig.4(a) shows that θopt

α is quite scattered; here, we
point out only that the macroscopic behavior of the anomaly
traffic exhibits no typical pattern. On the other hand, since α
determines the shape of the histogram of the number of packets
at a certain timescale, the multi-scale gamma-function model
can follow the fluctuating traffic patterns. Consequently, the
anomaly detection algorithm based on the multi-scale gamma-
function model is a promising approach.

Validity of our classification method: Of course, our
classification method has a room for improvement, because
it classifies not a small number of events into the Unknown
category (Fig.1). To make further improvements, we will use
the idea of BLINC [13]. In particular, we will introduce
BLINC’s traffic classification method that builds a structure of
connection patterns and applies them to heuristics. BLINC’s
idea and our classification method have a similarity in that
both can classify at the host level (what we called “events” in
this paper) rather than at the flow or packet level; hence the
two methods should work well together.

B. Summary and conclusion

We discussed automatic and dynamic parameter tuning of
a statistical Internet traffic anomaly detection algorithm, by
using real traffic traces gathered over the period of six months.



The main results are as follows. (1) Without learning, the
best parameter varies day by day. (2) With a longer learning
period, the best parameter setting is affected by significant
events during the learning period. (3) The appropriate period
of learning is about 3 days. (4) The performance degradation
caused by introducing dynamic parameter tuning is 17% in the
best case. We showed the importance of dynamic parameter
tuning in statistical network traffic anomaly detection methods
for the real-world deployment. To confirm the efficacy of our
method, we will conduct further research with other datasets
(e.g., CAIDA’s DITL dataset [14]) for analyses at the daily
level and investigation on other links.
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