
Toward Open Facility Networking:
Semantics Management for Higher-Level Interoperability

Hideya Ochiai
The University of Tokyo / NICT

7-3-1 Hongo, Bunkyo
Tokyo, 113-8656

+81-3-5841-6748, JP

jo2lxq@hongo.wide.ad.jp

Hiroshi Esaki
The University of Tokyo / NICT

7-3-1 Hongo, Bunkyo
Tokyo, 113-8656

+81-3-5841-6748, JP

hiroshi@wide.ad.jp

ABSTRACT
Open facility networking enables the increase of density,
scalability and flexibility at the deployment of sensors and
actuators, which are essentially required in Green IT scenarios.
We, in this paper, propose ubiquitous directory in open and multi-
domain facility networking framework as a semantics
management system for those sensors and actuators. Ubiquitous
directory achieves interoperability between sensors, actuators and
other software components at their semantic level. We developed
a prototype implementation in Green UT project, and confirmed
that sensors and actuators could be accessed by managed and
interoperable rules, even over the operational domain boundaries,
which could not have been done before introducing the ubiquitous
directory scheme.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network
Operations – network management

General Terms
Management, Standardization

Keywords
Facility Networking, Semantics Management, Multi-Domain
Sensor Networks

1. INTRODUCTION
Facility networking in buildings, factories and houses is widely
acknowledged as a promising technology for energy saving or for
reduction of energy wastes. The major changes from the
traditional facility networking to the energy-aware facility
networking are (1) analytical works on wider range of dataset, (2)
density of deployed sensors and actuators, (3) flexibility of
network configurations and (4) intelligence of control. (5) Real-
time control is less important, in energy-saving scenarios.

These requirements have lead to three-tiered architecture (Figure
1): i.e., (i) field-buses (e.g., BACnet[1], Lonworks[2]) at the
bottom-tier, (ii) data storage at the middle-tier and (iii) application
programs at the top-tier. Gateways at field-buses submit sequence
of data and events to the data storage. Application programs
retrieve them from the storage, and make analytical works and
produce new field-bus configurations that optimize the control to
save energy. In this architecture, we assume that field-bus
gateways, data storage, and applications be networked by TCP/IP.
Each component are developed by different vendors and operated
by different companies.

Applications carry out analytical works and configuration
optimizations, in this architecture, by retrieving data from
gateways and storages and by writing the configuration into
gateways. Here, in practice, without understanding the semantic
information or the background knowledge of data points (e.g.,
where the sensor is deployed, what it monitors, how frequently it
produces data sequence), applications cannot take any actions in
finding appropriate sensors and in choosing appropriate
algorithms to make the analyses and the optimizations.

In this paper, we propose ubiquitous directory (UD) that globally
manages the semantic information of sensors and actuators. The
semantic information we discuss in this paper is a collection of
static models of the real world that the applications aware. For
instance, it has a model of locations in a building (e.g., an entity
in this model may represents around the entrance of room 102), a
model of units (e.g., kWh consumed in the past one day) and a
model of target objecta (e.g., microwave oven, or 65-inch plasma
display). Ubiquitous directory manages those semantic entities,
and system operators bind data points (i.e., sensors and actuators)
to these semantic entities so that applications and any other
system components could identify the semantics of the data points.

Some works (e.g., GSN[3], Live E![4], WWSN[5]) have proposed
and discussed frameworks for sharing sensor data over multiple
operational domains. However, to our knowledge, sharing
semantic information is not deeply discussed, which is absolutely
necessary to enable enough interoperability among different
organizations.

This paper describes a prototype experience on UD construction
as a case study made in Green UT project[6] which has 1609 data
points.

Figure 1. Three-tiered facility networking architecture.

This paper is organized as follows. In section 2, we describe
interoperability issues in facility networking. In section 3, we
propose the semantics management scheme by introducing
ubiquitous directory. Section 4 describes implementation and
working experiences. In section 5, we make discussion. Finally,
section 6 provides the conclusion of this paper.

2. LAYERS OF INTEROPERABILITY
There are many types of interoperability that should be maintained
to enable multi-domain sensor networking. In this work, as figure
2 illustrates, we divide the interoperability level into three levels:
(1) network level interoperability, (2) application protocol level
interoperability and (3) data semantics level interoperability.
Network level interoperability can be easily achieved, for example,
by networking devices by a TCP/IP network. Application protocol
level interoperability can be made by using the same application
layer protocols. The existing facility networking application layer
protocols are open building information exchange (oBIX)[7],
BACnet/WS[1] and Live E![5]. The most important
interoperability level, which we focus on in this paper, is data
semantics level. The background knowledge or properties of data
points (e.g., where the sensor is deployed, what it monitors, how
frequently it produces data sequence) must be shared among
multiple operational domains.

As Sandra has described [8], semantic interoperability must be
based on semantic agreements among multiple domains with
regard to algorithms for computing requested values, the expected
side effects of a requested procedure, or the source or accuracy of
data elements. Most of the semantic information remains to be
implicit to other domains, which makes semantic agreements
among them difficult. He mentioned that semantic agreements
require the involvement of people for those reasons and that
describing them explicitly as a metadata might help detecting
mismatch of semantics but still difficult to completely maintain
consistency of semantics among multiple domains.

We basically agree to this idea, and we try to develop a framework
that enables or helps semantic interoperability in the area of
facility networking. In our approach, we develop a semantic world
that application programs aware in a so called ubiquitous
directory (UD). Operators associate data points with the managed
semantic world, which will improve semantics consistency level
among multiple domains. Translating data from one semantic
world to another semantic world, for example, temperature degree
from Celsius to Fahrenheit, could be one of the goals of such a
framework. However, we do not deeply discuss this case in this
paper, because we believe that it can be made possible after we

have developed a semantic information management framework
that we focus on in this paper.

3. SEMANTICS MANAGEMENT BY
UBIQUITOUS DIRECTORY

3.1 Architecture
Figure 3 shows the architecture which explicitly manages the
semantics of data points. We added ubiquitous directory to the
three-tiered architecture that we have presented in figure 1. The
ubiquitous directory provides a management service that enables
interoperability in data semantics level.

The ubiquitous directory has multiple application domains that
represent the real world; e.g., in figure 3, location model,
measurementType model and targetObject model are managed. A
data point physically attached at a field-bus is logically handled as
an element of data and works in the data-plane (i.e., among field-
buses, data storages and applications). By binding the data point
to these models, applications can find the point by appropriate
queries. Here, the binding algorithm can be implemented as
follows;

(1) Field-bus operators set their data points to have pointers (i.e.,
links) to the entities of these modeled worlds.

(2) The field-bus gateways send a request to register their data
points to the entities.

(3) The entities know what points belong to them.

In this way, data points and the managed entities in UDs can be
linked to each other.

3.2 Application Domain Modeling
At first, the semantic world should be modeled and shared over
operational domain boundaries in order to maintain
interoperability at the data semantics level. We propose a method
of modeling the semantic world by application domains, which
model should be managed in UDs.

Figure 4 presents the example of location, measurementType and
targetObject application domain models managed in a UD. The
location domain has the physical location entities that applications
refer in order to identify where data points are deployed. The
measurementType domain manages the data type classes that
applications must aware in data processing. The targetObject
domain manages the classes of facilities that applications must

Figure 3. Semantics management by ubiquitous directory.

Figure 2. Layers of interoperability.

understand to present users what it monitors. Every application
domain is modeled on a tree-based data structure.

An entity has a global unique name to identify the semantics from
everywhere in the system. For example, when we describe,

targetObject="/eDevice/kitchen/microwaveOven/"

it means a type of the facilities, which exactly is microwave oven
categorized to the class of kitchen in the electronic devices.
Another example is,

measurementType="/energy/kWh/absolute/"

This means a type or unit of sensor readings that a data point
observes, which exactly is consumed energy in kWh from when
the data point has been setup.

In this paper, we have presented the three types of application
domains as an example. However, depending on what the users
want to do with the facility networking system, there can be other
types of application domains, for example, operator's domain,
pointVendor's domain and employee's domain. UDs are designed
to manage every domain independently, which enables the
extension or inclusion of unexpected application semantic world.

It is certainly true that, as each application domain is modeled
independently, the data structure can be also modeled
independently; e.g., (1) in expressing the name of city and street,
we might use tree-based data structure such as
location="/jp/tokyo/bunkyo/hongo/7-3-1/"; (2) in expressing the
geographical location point we might use two-dimensional data
structure with latitude and longitude coordinate, for example,
geoLocation="(39.28312, 135.534)". However, we believe that
simplicity and extensibility are quite important regarding to the

feasibility of system deployment and operation. From our
previous working experiences, managing semantics by different
data structure does not work. Thus, application domain designers
should model the world only by tree-based data structure in
practice.

3.3 Binding Semantics to a Data Point
Next, data points should be bound to the managed models to
identify the semantics of them from anywhere in the system.

Figure 5 illustrates the binding process of semantics to a data
point. A data point is described as an XML entity, and the
semantics are attached by XML attributes. In this way, a data
point entity can have pointers to the managed models.

A data point has its unique identifier so that it can be identified
and looked up at the data-plane. As for the identification of
semantics, applications check the attached attributes.

This binding process should be done at the gateways when it
comes out from the field-bus. Based on the pointers presented in
the XML, the UD registers data points to the managed application
domain entities, and maintains the consistency of semantics
description over multiple operational domains.

If the described pointer is not managed in the UD, the pointer is
misconfigured or the UD is not sufficiently configured. The
misconfiguration of pointer happens, for example, when system
operator puts with typo: e.g., microwareOven for microwaveOven.
In this case, the semantics in the operator's mind certainly
managed in the UD, and the operator can fix the description.
Through, this verification process, the system gets description
consistency for the same semantics entity, and increases the
semantic level interoperability.

Figure 4. Application domain examples for location, targetObject and measurementType.

A UD sometimes need to be re-configured or extended in more
detail. For example, a field-bus operator puts a sensor in room
203, but the entity that represents room 203 is not registered in
the UD. In such cases, the UD is not sufficiently configured, and
it must be extended so that room 203 should be managed before
binding the pointer to a data point.

4. IMPLEMENTATION AND
EXPERIENCES
We have made a prototype facility networking system in Green
UT project. We have setup a Live E! data server that collects data
from seven field-bus domains (operated by seven organizations).
We have installed a viewer as an application that (1) lists up data
points in Web browsers and that (2) shows sequence of data by
graph. The total number of data points in the system is 1609.

We designed and implemented three application domains in an
Excel-based UD, and we (operators) bound the data points to
those managed application domains. We did not implement data
point registration method in UD because our main concern is the
management and operational costs. Besides, application could
lookup data points by semantic-based queries with our Live E!
system once the semantic pointers were attached to the data points

In this section, we describe (1) the issues we experienced before
carrying out any semantics management, (2) the effect of
semantics management by an UD, and (3) the cost and the
feasibility of the management.

4.1 Without Semantics Management
Without managing semantics (i.e., before introducing an UD), the
following three types of issues were observed.

(1) Operators have described each data point differently in their
own manner, which made applications difficult to search the data
points.

(2) Different field-buses used different expressions for data values.

(3) Even for the same category's data point, the detailed meanings
were different among different companies

Figure 6 illustrates that operators described data points differently
even though all of them are deployed in the same room (102B1).
This heterogeneity brings chaos – applications cannot easily find

the points by a simple ruled query. This is an example of a lack of
interoperability among operational domains at the semantic level.

Figure 7 shows that different field-buses report the working status
by their own presentation rules. Operator D used true and false in
expressing the status, operator E used T and F, and operator F
used working and stopped in Japanese letter.

As in figure 8, to present the consumed electrical energy, some
data points made the summary from when the facility had setup,
however, others (e.g., top-left side in figure 8) made the summary
from only the last 10 minutes. The granularity was also different
among different system operational domains.

Figure 6. Description of the same room by different operators.

Figure 7. Description of system status by different operators.

Figure 8. Data sequence of consumed energy.

Figure 5. Binding semantics to a data point.

4.2 The Effect of Semantics Management by
an Ubiquitous Directory
After introducing an UD, and with some operational effort (i.e.,
modeling of application domains and binding semantics to data
points), the first issue that description difference of data points
among field-bus operators was solved.

Applications could find data points by semantic-based queries.
For example, we have got 45 data points by the query below:

location=

"/jp/tokyo/bunkyo/hongo/7-3-1/EngBld2/10F/102B1/"

Figure 9 presents the examples of those data points. This result
shows that users could find data points over operational domain
boundaries by specifying the location in the managed and shared
location model.

In this way, the first issue was solved. However, the second and
the third issues were not solved only from this approach. There
should be other rules that define (1) the manner of expression of
data values and (2) output sequence scheme. To homogenize the

Table 1. Time spent for ubiquitous directory configuration

Application Domain Scale [size] Config [min]

location 114 120

operator 7 10

measurementType 133 155

Table 2. Time spent for binding semantics to data points

Field-bus Points Locations Types Config[min]

A 679 9 8 60

B 5 1 1 4

C 14 2 1 10

D 349 23 7 65

E 40 33 1 17

F 37 8 5 18

G 382 42 13 110

data expression manners and other differences, we must develop
standardized rules in the system and operators must reconfigure
each field-bus to obey the standard to enable semantics
interoperability.

4.3 Management and Binding Cost
In managing semantics of data points by UDs, we must (1) design
and implement application domains in UDs and (2) bind data
points to the entities in UDs. In this study, we evaluated the cost
of maintenance with regard to the time spent in the configuration.

Table 1 describes the time spent in configuring the UD: i.e., the
configuration time of setting application domain models. We have
implemented three application domains. The Scale column
presents the number of elements that application domain has. The
Config column presents the time spent in designing and setting
the application domain.

Table 2 describes the time of binding location and
measurementType to data points. We had seven field-buses named
A to G here. The Points column presents the number of data
points in the field-bus. Locations and Types columns describe the
number of related application domain entities to the field-bus;
location domain and measurementType domain respectively. The
Config column shows the time spent in binding pointers to those
data points. For example, at field-bus=D, 349 data points were
operated, and they were classified into 23 entities in the location
application domain and 7 entities in the measurementType
application domain. 65 minutes was spent in binding those data
points to the application domains.

5. DISCUSSION
In designing the application domains and binding data points to
them, we referred to the information submitted by each field-bus
operator. This implies that configuration of UD is request-based

Figure 9. Retrieved data points with observed data

by field-bus operators. Field-bus operators with assuming some
application scenarios must at first request the configuration of
their UD if appropriate entities are not managed in it. After the
UD administrator has registered the requested entities, the field-
bus operators can bind their data points to the newly managed
entities at the UD.

Applications we have tested in this paper are just a viewer that
lists up all the data points and draws graphs. When we would
assume other kind of applications, it would be quite certain that
we must reconfigure the UD to also match the applications'
requirements. Our final target applications are energy saving
related applications. Thus, we must develop them and test the
feasibility and effect of UD-based semantics management.

6. CONCLUSION
We have studied semantics management in multi-domain facility
networking, which is necessary to enable interoperability of
sensors, actuators and other software components at the semantic
level. By sharing semantic information (e.g., what sensors are
managed in which domain, or what actions actuators do), the
interoperability should be guaranteed among different domains.

We have introduced ubiquitous directory (UD) into the three-
tiered facility networking architecture. We also introduced the
concept of application domains to model the semantic world of
applications in UDs. By binding data points to the managed and
shared semantic world, semantic level interoperability should be
increased.

We have implemented a prototype system in the Green UT project,
and tested the impact of the proposed schemes. Before
introducing an UD, every operator has described their data points,
defined the expression rule of data values and the properties of
sequential data in their own manner. After introducing an UD, we
experienced that applications could resolve the data points by
managed query expressions.

In the current status, we have not considered many application
scenarios in constructing the UD. Since the application domains
in UD are related to the applications on the framework, we should
test with more application scenarios to evaluate whether our
proposed approach is practically feasible or not.

7. REFERENCES
[1] BACnet, http://www.bacnet.org/

[2] Lonworks, http://www.echelon.com/

[3] Green University of Tokyo Project, http://www.gutp.jp/

[4] Kerl Aberer, Manfred Hauswirth and Ali Salehi,
"Infrastructure for data processing in large-scale
interconnected sensor networks", In Proceedings of IEEE
MDM, 2007.

[5] Hideya Ochiai, Satoshi Matsuura, Hideki Sunahara, Masaya
Nakayama and Hiroshi Esaki, "Operating architecture and
multi-attribute search for wide area sensor networks", IEICE
Transaction on Communications, Vol.J91-B, No.10,
pp.1160--1170, October, 2008

[6] Lei Shu. Manfred Hauswirth, Long Cheng, Jian Ma, Vinney
Reynolds and Lin Zhang, "Sharing worldwide sensor
networks", In Processdings of IEEE SAINTW, 2008.

[7] Open Building Information Xchange(oBIX),
http://www.obix.org/

[8] Sandra Heiler, "Semantic Interoperability", ACM Computing
Surveys, Vol. 27, No. 2, pp.271--173, Jun. 1995.

