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SUMMARY There are many kinds of control networks,
which have been used in various non-IP network areas, such as
BA (Building Automation), FA (Factory Automation) and PA
(Process Automation). They are now introducing IP and face the
issues of security and configuration complexity. The authors have
proposed a model which intends to solve these issues while satis-
fying restrictions, i.e. small embedded devices, isolated networks
and private naming system/name space, which are required when
introducing new functionality into existing control networks. Se-
cure bootstrap sequence and device-to-device communication us-
ing the chain of trust are the points of the model. This paper
shows the practicability of the model through implementing the
model experimentally.
key words: Control networks, Security, Auto-configuration

1. Introduction

Control networks are different from IP (Internet Proto-
col) with regard to their history, purposes and tech-
nology. There are numerous standards of the con-
trol networks, e.g. FOUNDATION fieldbus ∗ [1],
PROFIBUS ∗∗ [2], MODBUS ∗∗∗ [3] and BAC-
net ∗∗∗∗ [4] which have been used in various non-IP
network areas, such as BA (Building Automation),
FA (Factory Automation) and PA (Process Automa-
tion). Multiple standards coexist within a single system
usually because the system’s requirements are diverse.
Many standards are introducing IP as a transport tech-
nology, e.g. FOUNDATION fieldbus HSE, PROFInet,
MODBUS/IP and BACnet/IP.

There are issues when introducing IP into con-
trol networks [5]. First, current control networks have
not sufficiently considered security [6]. Network secu-
rity must be necessary when introducing IP into them.
However, security is not easy for control networks be-
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cause the small embedded devices commonly used in
control networks have limited computational perfor-
mance because of their restricted requirements of cost,
physical size and power consumption. The other is-
sue is the configuration complexity of the control net-
works. Devices are usually manually configured in the
fields whereas their user interfaces are not so powerful,
like PCs. However, the number of devices are increas-
ing because measuring and controlling need to be more
precise. For example, a BA system of a large build-
ing complex in Japan has 170,000 control points with
16,500 devices ∗∗∗∗∗. This will present not only the
cost of engineering but also the possibility of human
errors in the future if a labor-saving mechanism is not
introduced.

The following are restrictions when introducing
new functionality into the control networks.

• Small embedded devices:
The small embedded devices commonly used in
the control networks have limited computational
performance because of their restricted require-
ments of cost, physical size and power consump-
tion. Some devices will have more powerful CPUs
in the future. At the same time, low-power CPUs
will survive because choice of CPU depends upon
not only cost performance but also power con-
sumption which has an impact against battery op-
eration or bus width which has an impact on circuit
size.

• Isolated network environments:
The control networks do not always require con-
nectivities to the Internet even though introduc-
ing IP. It is the user’s choice whether to connect
to the Internet. Hence, functions introduced into
them have to work well under an isolated network
environment.

• Private naming system and private name space:
Information of the control networks, not only the
traffic but also device’s name, has to be confiden-
tial, because the information can help to indicate
corporate activities, e.g. the capability of plants.
Hence, the naming system should be closed to the
public if operators desire. It is also important not

∗∗∗∗∗http://www.echelon.com/about/press/2003/echelon_
mori.htm
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to force a device’s identity to be global unique if
most of the devices should not be accessed from
outside. For the above two reasons, DNS is not an
appropriate naming system for them.

We have proposed a model [7], which intends to
solves the above issues while satisfying the above re-
strictions when introducing IP into the control net-
works. It is important for them to inherit existing prop-
erty when introducing new functions because they have
large property, e.g. specification, operational knowl-
edge and applications. This is the reason the model
is a framework whose functions are addressed to either
below the application layer or the middle-ware instead
of inventing new control network protocols.

In this paper, we show the practicability of the
model by implementing it experimentally. This paper
shows an overview of the model in Section 2, details
of the model in Section 3, the implemented system in
Section 4, considerations through implementation in
Section 5, related work in Section 6 and further study
items in Section 7.

2. Proposed Model

2.1 Network Security

The authors have already studied a security mechanism
[6] which can satisfy the restrictions described in Sec-
tion 1. We will use this mechanism in our proposed
model. The following are the features of the security
mechanism.

• This mechanism provides end-to-end security.
Most control networks rely on a firewall model
which assumes specific network topology. How-
ever, end-to-end security will be necessary because
wireless technology and nomadic devices break the
firewall model.

• Communication is protected by IPsec [8] which
provides IP packets with confidentiality, integrity
and authentication with the other end. IPsec is
useful because its enforcement is independent from
applications and sharable among them. IPsec is
applicable to small embedded devices due to not
using public key cryptography.

• It is important for IPsec to share a secret, which
is called IPsec SA (Security Association), between
both ends. Key exchange protocols will be impor-
tant if running IPsec on small embedded devices
because these devices do not have a powerful user
interface like a PC, which makes manual keying
difficult. The security mechanism uses not IKE
(the Internet Key Exchange) [9] but KINK (Ker-
berized Internet Negotiation of Keys) [10] for the
key exchange protocol. IKE is the most popular
key exchange protocol for IPsec. However, it is
not suited to small embedded devices because the

Diffie-Hellman key exchange is mandatory. KINK
can work well on small embedded devices because
KINK is based upon Kerberos † [11], where public
key cryptography is not mandated.

• In the security mechanism, a node’s identity is in
the manner of Kerberos, i.e. a principal-id, which
is a combination of a realm name and a principal
name.

2.2 Auto-configuration using a Directory Service

To simplify the configuration process, the model pro-
vides the device’s application layer with an auto-
configuration mechanism. The basic ideas of the auto-
configuration are 1) to minimize pre-installed informa-
tion in a device, and 2) to acquire most information
from servers located in networks. IP address config-
urations are beyond the scope of the model. It can
be done by DHCP (Dynamic Host Configuration Pro-
tocol) in IPv4 or RFC2462 in IPv6, with which the
model can be combined. The auto-configuration re-
quires not only name/address resolution like DNS but
also general data handling, e.g. searching, getting and
updating data. We introduce our own directory service
named PS (Property Server) [12]. The following are
the features of PS.

• It is not a prerequisite condition for PS to connect
to the Internet because PS does not require global
tree structures like DNS.

• PS maintains a device’s attributes as metadata of
the device’s identity. A typical example is that
an IP address IPFOO is an attribute value of an
attribute type ATTRIPaddress, and the attribute,
i.e. the type and the value, belongs to a device’s
identity FOO as metadata.

• PS supports two types of transactions, i.e. PUT
and GET. PUT sets/updates attributes in PS.
GET acquires attributes from PS. Any request
of transaction has search conditions which desig-
nate attributes to be affected. For example, iden-
tity/IP address resolution is done by GET trans-
action, where search conditions is the value of
ATTRIPaddress belonging to the identity FOO,
which returns IP address(es) IPFOO.

• PS’s protocol uses XML for the future extension.
• In the proposed model, every node belonging to

a system has to use the security mechanism de-
scribed in Section 2.1. Illegal access to PS from
outside can be prohibited with IPsec security pol-
icy simply. An access control list can be introduced
into PS if accurate restrictions are required.

†Kerberos is a trademark of the Massachusetts Institute
of Technology (MIT).
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2.3 Bootstrap Sequence using the Chain of Trust

When considering secure auto-configuration, devices
have to discover a trusted PS, then exchange data with
PS under secure communication channels. The follow-
ing bootstrap sequence, which we call the Chain of
Trust, satisfies the above requirements.

1. Devices can trust Kerberos server KDC (Key Dis-
tribution Center) by sharing a key. It is a prereq-
uisite condition of Kerberos.

2. Devices should trust PS which trusted KDC shows.
3. Devices register their own information, e.g. a

principal-id and IP address(es), to trusted PS. The
information will be used for discovering peers (see
Section 2.4).

4. Devices should trust data which trusted PS pro-
vides. Then devices can complete the sequence.
The communication is protected by IPsec.

Hence, the minimum information with which a de-
vice has to be pre-installed is a principal-id and a key
shared with KDC, i.e. a secret key of Kerberos. Other
information can be acquired from PS.

2.4 Device-to-Device Communication

In control networks, communication is occupied by con-
trol messages and notification messages between de-
vices, e.g. controllers, sensors and actuators. Hence,
devices have to discover trusted peers, then to exchange
messages with them under secure channels. The Chain
of Trust can be applied in that case.

1. Devices search their peers using PS because they
have already know trusted PS. (see Section 2.3).

2. Devices should trust peers which trusted PS pro-
vides. The communication is protected by IPsec.

3. Details of the Model

Figure 1 shows the bootstrap sequence and the device-
to-device communication using the chain of trust. De-
tails of each function is shown in Figure 2 through
Figure 6.

1. KDC Discovery (KDCD):
DHCP server(s) advertise KDC related informa-
tion, e.g. KDC’s IP address(es) and realm name(s)
where KDC offers authentication services and NTP
related information, e.g. NTP server’s IP ad-
dress(es), (see Figure 2).

2. Authenticating KDC:
Device X needs to authenticate KDC advertised
by DHCP server (see Figure 3). First, X adjusts
its clock with NTP server because Kerberos re-
quires that every device synchronize its clock to

Device X DHCP server KDC PS server

A) Advertising info. of KDC & NTP

C) Authenticating KDC

E) Registering own info. and getting boot info.

Device Y

F) Discovering   Device Y

G) Device-to-device comm.

Chain of trust
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B) Adjusting      the clock
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Fig. 1 Messages of the proposed model

DHCP_REQ

DHCP_REP
- KDC's realm name & IP address
- PS service's principal-id
- NTP server's IP address

Device X DHCP server

Discovered KDC

Fig. 2 KDC Discovery

prevent replay attacks. Second, X authenticates
KDC, which X learned with DHCP, through ver-
ifying a returned packet. TGT (Ticket Granting
Ticket) in the packet is necessary for subsequent
Kerberos services.

Device X KDC

NTP_REQ

NTP_REP

KRB_AS_REQ

KRB_AS_REP
- TGT(X)

Adjusted the clock 

Authenticated KDC

NTP server

Fig. 3 Authenticating KDC

3. PS Discovery (PSD):
Device X acquires PS’s information from KDC (see
Figure 4). X shows its principal-id to KDC. Then
KDC returns PS’s information, i.e. PS’s principal-
id and IP address(es).
X has to acquire a service ticket for PSD, e.g.
TICKET(PSD), prior to the above procedures.
KRB PRIV messages, which need a service ticket,
are used for protecting PSD because IPsec/KINK
cannot be used at this moment.

4. Booting up:
Device X registers its own information to PS which
is used for device discovery, and acquires its boot
data from PS. Then, the bootstrap sequence is
completed (see Figure 5).
First, X acquires a service ticket for KINK with
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Device X KDC
KRB_TGS_REQ for PSD

- TGT(X)

KRB_TGS_REP
- TICKET(PSD)

PSD_REQ
- X's principal-id

PSD_REP
- PS's principal-id & IP address Discovered PS

PSD ready
Protected by
KRB_PRIV

w/ TICKET(PSD)

Fig. 4 PS Discovery

PS, e.g. TICKET(KINK w/ PS), from KDC. Sec-
ond, IPsec is established between X and PS after
exchanging KINK messages. Third, X registers its
own information, e.g. a principal-id and IP ad-
dress(es), which other devices or servers can use
for discovering. Fourth, X acquires its boot data.
Then X completes the bootstrap sequence.

Device X PS server

KRB_TGS_REQ for KINK w/ PS
- TGT(X)

KRB_TGS_REP
- TICKET(KINK w/ PS)

KINK_CREATE
- IPsec SA & TICKET(KINK w/ PS)

KINK_REPLY
- IPsec SA

PS_PUT: my IP address
- My info (X's principal-id & IP address)

PS_ACK

PS_GET: my booting data?
- My info (X's principal-id)

PS_ACK
- X's booting data

KDC

KINK ready

IPsec ready

Booted up

Registered X's IP info

Protected
by IPsec

Protected
by IPsec

Fig. 5 Booting up

5. Device-to-device communication:
Device X can discover device Y using PS, i.e.
device discovery, then starts the device-to-device
communication with Y (see Figure 6).
First, X discovers Y through PS. A typical example
is that X resolves Y’s IP address from Y’s identity
like DNS. IPsec between X and PS has already
been established at the bootstrap sequence. Sec-
ond, X acquires a service ticket for KINK with Y,
e.g. TICKET(KINK w/ Y), from KDC. Third,
IPsec is established between X and Y after ex-
changing KINK messages. Then the devices can
exchange application messages which are protected
by IPsec.

4. Implemented System

We implemented the model to examine its practicabil-

Device X Device Y

KRB_TGS_REQ for KINK w/ Y
- TGT(X)

KRB_TGS_REP
- TICKET(KINK w/ Y)

KINK_CREATE
- IPsec SA & TICKET(KINK w/ Y)

KINK_REPLY
- IPsec SA

App

App

PS_GET: Y's IP address from name?
- My info (X's principal-id)
- Y's principal-id

PS_ACK
- Y's IP address

KDCPS server

Discovered Y

IPsec ready

KINK ready

Protected by IPsec

Protected by IPsec

Fig. 6 Device-to-device communication

ity, i.e. object code size and performance, experimen-
tally. Table 1 shows the specifications of an experi-
mentally implemented device, whose CPU is H8/3029
(Renesas Technology Corp.), which has cryptographic
hardware in a Xilinx’s FPGA. Renesas’s H8 family is
a popular low-end CPU in Japan. Table 2 shows the
specifications of servers which were used for the system.

Table 1 The specifications of the device

H/W H8/3029@20MHz, Crypto H/W@20MHz
(3DES,MD5)

OS, IP Toppers FI4 w/ Original IP stack
IPsec ESP (3DES-CBC,HMAC-MD5)

Kerberos Original code based RFC4120
(etype:des-cbc-md5)

KINK Original code based RFC4430

Table 2 The specifications of the servers

DHCP CPU:pentium-III@1.2GHz,
MEM:128MB, OS:freebsd4.10R

NTP, KDC CPU:pentium-III@750Mhz,
MEM:896MB, OS:linux2.6.8,
Kerberos:Heimdal-0.6.2, KINK:racoon2

PS CPU:celeron@1.7GHz, MEM:1GB,
OS:linux2.6.8.1

4.1 Object Code Size

Table 3 shows the code size of the device. The total size
will be about 30K bytes greater if the cryptography, i.e.
3DES and MD5, is implemented by software instead of
hardware.
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Table 3 Object code size of the device (K bytes)

Module Size Module Size

OS 64 Kerberos 25

IP (v4/v6) 132 KINK 20

IPsec 8 Crypto 7

App 16

total 272

4.2 Performance of the Bootstrap Sequence

Table 4 shows the processing time of each function
on the device, whose conditions are with and without
cryptographic hardware. The values without parenthe-
ses mean net processing times, and the values in paren-
theses mean waiting times from sending a request til
receiving a reply. KINKI and KINKR mean the pro-
cessing of KINK initiator and responder. PSPUT,IPsec

means PS’s PUT transaction which is for registering
the device’s IP address. PSGET,IPsec means PS’s GET
transaction which is for getting the device’s boot data
(512bytes). Both transactions include the overhead of
IPsec ESP. The waiting times of KINKI , i.e. the values
in parentheses, are varied because they depend upon
the performance of a peer. The waiting time of 112
msec occurs where a device initiates KINK with PS.
The device with and without cryptographic hardware
make a kink initiator wait for 73 msec and 93 msec re-
spectively. Kerbeeros related performance, i.e. TGT,
TGS, PSD, KINKI and KINKR, is improved and about
five times faster at the greatest than the previous pro-
totype.

Those values exclude the processing time of IP ad-
dress configurations, i.e. DHCP in IPv4 or RFC2462
in IPv6, and L2 address resolution, i.e. ARP (Address
Resolution Protocol) in IPv4 or ND (Neighbor Discov-
ery) in IPv6.

Table 4 Processing time of each function on the device (msec)

crypto H/W w/ w/o

KDCD 59 (0.5) 59 (0.5)
NTP 58 (0.5) 58 (0.5)

TGT 26 (34) 74 (34)

TGS 49 (35) 178 (35)
PSDKRB PRIV 114 (35) 318 (35)

KINKI 65 (112 or 73) 81 (112 or 93)

KINKR 73 (0) 93 (0)

PSPUT,IPsec 40 (13) 164 (13)
PSGET,IPsec 51 (17) 362 (17)

The bootstrap sequence described in Section 2.3
requires the following functions: KDCD, NTP, TGT,
two TGSs, PSDKRB PRIV , KINKI , PSPUT,IPsec and
PSGET,IPsec (see A through E of Fiture 1 or Fig-
ure 2 through Figure 5 for details). the processing
time of the sequence is shown in 5 The values without
parentheses mean net processing times and the values
in parentheses mean waiting times.

Table 5 Processing time of the sequences on the device (msec)

Initiator Responder
crypto H/W w/ w/o w/ w/o

Bootstrap 511 (282) 1472 (282) - -
Device-to-Device 165 (125) 621 (145) 73 93

Table 6 Processing time of IPsec on the device

crypto H/W w/ w/o

IPsec ESP 4.8µsec/byte 300µsec/byte

4.3 Performance of the Device-to-Device Communica-
tion

As described in Section 2.4, the device-to-device com-
munication has the overhead (see F through G of Figure
1 or Figure 6 for details). If the device is an initiator of
the communication, the overhead is PSGET,IPsec, TGS
and KINKI . If the device is a responder of the commu-
nication, it is only KINKR. Once IPsec is established
between devices, the performance of IPsec is one of the
major factors.

The overhead of the sequence and IPsec are shown
in Table 5 and Table 6. The values without parenthe-
ses mean net processing times and the values in paren-
theses mean waiting times. The throughput of IPsec
ESP inbound is omitted because both performances are
nearly the same.

5. Considerations

5.1 Object Code Size

Object code size is improved from the previous proto-
type [13], i.e. from 419K bytes to 272K bytes. Ker-
beros related implementations(Kerberos and KINK)
contributes the improvement. The previous implemen-
tation was ported from MIT implementation whereas
the current one is our original code which simplify pro-
gram of encoding/decoding messages, especially ASN.1.
To reduce the current code, it is necessary to shrink the
IP part which occupies about 50% of the entire code.
Hardwired functions, such as off-load engine, may con-
tribute the code size. It can be a further study item to
shrink the object code size.

5.2 Performance of the Bootstrap Sequence

The sequence takes 793 msec or 1754 msec with or with-
out cryptographic hardware (see Table 5). It will usu-
ally take one or several days to start the entire system if
the system is a large one due to starting subsystem by
subsystem for making sure. If assuming to start a sys-
tem described in Section 1 with device-by-device man-
ner, i.e. seventeen thousand devices, within 24 hours,
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every device will have to start within 5 seconds on av-
erage. The actual margin is longer than the above time
because of starting a system in a subsystem-by subsys-
tem manner instead of device-by-device usually. Hence,
the performances of the sequence can be acceptable.

We may have to consider for burst accesses to
servers if the system has a large number of devices.
For the device side, randomly delayed bootstrap can
be a solution. However, the necessity and the validity
are future study items. For the server side, redundancy
can be a solution, i.e. the redundancies of KDCs and
PSs. It is not difficult to make KDC redundant [14].
But it is a further study item for PS.

5.3 Performance of Device-to-Device Communication

The overhead of the initiator takes 290 msec or 766
msec with or without cryptographic hardware (see Ta-
ble 5). The overhead happens when both the device
starts and the lifetime of Kerberos’s tickets or IPsec
SAs is expired. The former case can be acceptable with
the reasons in Section 5.2. The latter case should be
considered because the response time of control net-
work systems should usually be on the hundred micro-
second order. However, the overhead can be accept-
able if the lifetimes are long enough, e.g. days, weeks
or months, and are tuned operationally. The overhead
of the responder can also be acceptable because it is
shorter than the initiator’s. Another possible way is
to introduce priority into the IP packet processing of
a device. For example, the overhead described above
will have less impact if the IP stack of the device has
fast-path and slow-path, and application packets are
assigned to fast-path and other packets including Ker-
beros and KINK are assigned to slow-path. This can
be a further study item.

As an example of IPsec’s throughput, the process-
ing time for 1024-byte payload takes 5 msec or 307 msec
with or without cryptographic hardware (see Table 6).
Considering the response time, i.e. the hundred micro-
second order, the former case is fast enough, but the
latter is not. The performance can be improved with
AES instead of 3DES if the device cannot introduce
cryptographic hardware.

5.4 NTP Server

Kerberos assumes that the clock of each device is ad-
justed to the clock of the KDC. It is used for preventing
from some replay attacks. This is why our proposed
model uses NTP server. However, for example, a mali-
cious NTP server can advertise bogus time to devices.
If a difference between the clocks of the KDC and the
device is more than the allowable clock skew, the KDC
will reject any request from the device, then the boot-
strap sequence will be failed.

[15] showed an extension that was able to relax

the requirement of the time synchronization. The ex-
tension has already included into the specifications of
both Kerberos and KINK. If the difference is greater
than the skew limit, the KDC returns an error message
that includes the difference. Consequently, the device
stores the difference, and uses it to adjust the time to
process further messages. Hence, the device can finish
its bootstrap sequence.

If a system requires a trusted NTP server the
device-to-device communication can be used addition-
ally. First, the NTP server implements the proposed
model described in Section 2. Second, the NTP server
starts its service before any device starts. Third, a de-
vice can find the NTP server from PS, then can synchro-
nize its clock again under security of Kerberos, KINK
and IPsec after the device completes its bootstrap se-
quence.

6. Related Work

There are models of device’s auto-configuration. This
section shows differences between our model and others.

Jini † has the following features: 1) Engaged dis-
tributed object technology, e.g. RMI, CORBA, SOAP,
can distribute service entities over networks. 2) Servers
named Lookup Service manage objects named Proxy.
A client has to load an appropriate Proxy when using a
distributed service remotely. 3) Lookup Service, which
is necessary for registering a Proxy by a service entity
and for loading a Proxy by a client, can be discovered
on demand with IP multicast. Jini may be suited to
the purpose at which our model aims since both mod-
els can provide any required data to devices. The early
version of Jini had security issues, e.g. [16], then Jini
v2 [17] enhanced it. However, it is difficult to com-
pare the actual security mechanism of Jini with that
of our model because it is hidden away from the spec-
ification by Java Class. Hence, Jini’s applicability to
devices cannot be identified. Jini v2 introduced Trust
Verifier by which a client can verity the integrity of a
loaded Proxy. The idea of Trust Verifier can be use-
ful for our model because our model can also provide
program code to devices remotely.

SLP (Service Location Protocol) [18] provides lo-
cations of services as URLs. SLP servers, i.e. Service
Agent and Directory Agent, can be discovered on de-
mand with IP multicast. Cache servers named Direc-
tory Agent contribute scalability to SLP. Please note
that SLP does not have any service entity itself. Our
model has a service entity named PS which can provide
any required data, e.g. application program and data,
under a secure environment. Hence, to examine if SLP
can be used in our model is appropriate rather than to
compare both models equally. SLP may be applicable
to KDCD instead of DHCP.

†Jini is a trademark of Sun Microsystems, Inc.
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UPnP †† (Universal Plug and Play) [19] uses
SOAP (Simple Object Access Protocol), HTTP and
TCP for control messages and GENA (General Event
Notification Architecture), HTTP and TCP for notifi-
cation messages whereas existing control networks usu-
ally use UDP for those purposes. This means that they
will have to be changed if introducing UPnP. Hence, the
goal of UPnP is different from our model because one
of our goals is to minimize the impact on them when
introducing an auto-configuration mechanism. Public
key cryptography is mandated for UPnP. So UPnP’s
applicability to devices is also different from our model.

7. Further Study Items

7.1 Sharing Mechanism of a Kerberos’s Secret Key

Kerberos assumes that each device shares their Ker-
beros’s secret keys with KDC. However it is important
for control networks how to share a secret key between
a device and KDC because there can be a huge number
of devices whose user interfaces are limited in a sys-
tem. There are two approaches to share a secret key.
One is to ship a device with a secret key. The user
reads the secret key, then sets it to KDC. The other is
on-site installation. The user creates and installs a se-
cret key into the device. However, we have to consider
those approaches further because of their insufficiency
as described below.

For the former approach, it assumes that KDC has
a pair of a public key and a private key, and KDC is
specified before a device is shipped. Then it will be
possible to ship the device with a Kerberos’s secret
key and a KDC’s public key. Consequently, the de-
vice can provide the secret key which is protected with
the KDC’s public key. For example, this technique may
be suited to small embedded devices mentioned in Sec-
tion 1 if using low exponent RSA because the opera-
tions of encryption and verification are cheap while the
operations of decryption and signature are expensive.
However, this technique has the following restrictions.
1) A device requires a communication channel to read
the secret key encrypted with the KDC’s public key. 2)
The channel is out-of-band from the proposed model
described in Section 2. 3) Readout is done with device-
by-device manner. 4) A device has the KDC’s public
key when shipping. Please note that the secret key can
be updated with Kerberos’s administration command
,e.g. kpasswd, remotely after finishing sharing the se-
cret key.

For the latter approach, [20] proposed resurrecting
duckling security policy model where a weak device can
establish a master-slave relationship with other device
securely under ad-hoc environment. In ad-hoc environ-

††UPnP is a trademark of the UPnP Implementers Cor-
poration.

ment, a device have to assume the absence of an on-
line server. Figure 7 shows a summary of resurrecting
duckling security policy model. A device called a duck-
ling has two states, i.e. imprint-able and imprinted,
and the initial state is imprint-able. When other device
called a mother duck sets a shared key called an igni-
tion key, the duckling changes the state to imprinted,
then obeys the mother duck. When the duckling deletes
the ignition key by the mother duck ’s order, the duck-
ling changes the state to imprint-able, then is ready to
accept a new mother duck. If a writer which installs a
Kerberos’s secret key into a device is a mother duck and
if a device where the secret key is installed is a duckling,
the Kerberos’s secret key will be installed into the de-
vice under ad-hoc environment such as an installation
field. It may be better to separate the Kerberos’s se-
cret key from the ignition key. However, this technique
has the following restrictions. 1) A device has a com-
munication channel with a writer. The channel have to
provide confidentiality and integrity by itself, e.g. elec-
trical contact rather than wireless, because an ignition
key from a mother duck to a duckling is plain text (see
[20] for details). 2) The channel is out-of-band from the
proposed model described in Section 2. 3) Installation
is done with device-by-device manner.

imprint-able
(accepting any master)

imprinted
(obeying a master) 

executing RESET command,
then deleting an ignition key

an ignition key installed

a mother duck (a master)

installing an ignition key issuing any command

start a duckling (a slave)

Fig. 7 Resurrecting duckling security policy model

7.2 Kerberos’s Inter-realm Operation

It is common for management to divide a large sys-
tem into small manageable domains, which are called
realms in the manner of Kerberos. In the case of Ker-
beros, inter-realm is the technique to federate opera-
tional realms by sharing a secret between KDCs (see
Figure 8). However, inter-realm has issues when being
applied to control networks as follows.

• inter-realm costs a device when the device speaks
to another device which belongs to a different
realm (see Figure 9). 1) The device has to tra-
verse realms until it reaches the destined realm. 2)
The device has to find a path to traverse realms.
It is the device’s responsibility to find the next hop
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KDCC

KDCD
KDCB

realm B realm D

realm C

devices

devices devices

sharing a secret KBC sharing a secret KCD

KDCA

realm A

devices

KDCE

realm E

devices

sharing a secret KAB sharing a secret KDE

TraversingX Y

Fig. 8 An example of inter-realm

device X of
realm A

KDCA

KDCE

KDCB

KDCD

Cross-realm TGTAB

TICKETXY

inter-realm relationship

device Y of
realm E

Exchanging KINK
with TICKETXY

Cross-realm TGTBC

Cross-realm TGTDE

Fig. 9 An example of traversing realms

of KDC. 3) The device has to acquire special tick-
ets, which are called cross-realm TGT, to traverse
realms. The number of tickets to be acquired are
in proportion to the number of realms to be tra-
versed. These can be expensive for small embed-
ded devices.

• Host centric fashion mentioned above can be a
cause of inconsistency if a system has a huge num-
ber of and a variety of devices. For example, it is
the device’s responsibility to find the next hop of
KDC. However, compatibility of device’s behavior
about finding path is not obvious because the spec-
ification of Kerberos does not define about travers-
ing realms precisely. Consequently, the device’s
behavior depends upon its implementation.

• Inter-realm is formed by chaining KDCs. The de-
vice will be unable to traverse KDCs even if one of
the intermediate KDCs is unavailable.

PKINIT [21], PKCROSS [22] † and KDC referrals
[23] which are under discussion in IETF may be able to
solve some of the above issues.

8. Conclusion

Through implementing the model experimentally, this
paper shows the practicability of our proposed model

†[22] has already expired. However, PKCROSS can re-
vive after PKINIT is completed because PKCROSS depends
upon PKINIT.

which is intended to solve the issues, i.e. security and
configuration complexity, while satisfying the restric-
tions, i.e. small embedded devices, isolated networks,
private name space/naming system and inheriting the
property. Secure bootstrap sequence and device-to-
device communication using the chain of trust are the
points of the model.

There are several further study items. The first is
to shrink the IP protocol stack. The object code size
of the prototype device achieves 270K bytes. It will be
necessary to shrink the IP protocol stack if smaller code
is required. The second is priority processing in the IP
protocol stack. The device’s performance of the boot-
strap sequence and device-to-device communication can
be acceptable if the lifetimes of Kerberos’s ticket and
IPsec SAs are turned operationally, and if cryptography
is implemented reasonably, i.e. cryptographic hardware
or faster algorithm than 3DES in software. However the
overheads can not be zero. Hence, priority processing
in the IP protocol stack, such as fast-path and slow-
path, may reduce influence of the overheads. The third
is redundancy of the servers, i.e. KDC and PS. The
fourth is the mechanism of sharing a Kerberos’s secret
key between a devince and KDC. The fifth is to opti-
mize inter-realm operation for small embedded devices.
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